Time filter

Source Type

Magdeburg, Germany

The Otto-von-Guericke University Magdeburg was founded in 1993 and is one of the youngest universities in Germany. The university in Magdeburg has about 14,000 students in nine faculties. There are 11,700 papers published in international journals from this institute.It is named after the physicist Otto von Guericke, famous for his experiments with the Magdeburg hemispheres.The former Technical University Magdeburg , a teacher training college and a medical school were absorbed into the university when it was created. The university now composes nine faculties.Raila Odinga, a former Prime Minister of Kenya, is an alumnus of the Technical University. Professor Dr. Nguyen Thien Nhan, Vietnam's current Deputy Prime Minister and Minister of Education & Training, is also an alumnus of the Technical University. Dr. Rumiana Jeleva, former Minister of Foreign Affairs of Bulgaria , earned a PhD degree in sociology at the Otto-von-Guericke University Magdeburg. Wikipedia.

Cao H.,Yale University | Wiersig J.,Otto Von Guericke University of Magdeburg
Reviews of Modern Physics | Year: 2015

This is a review on theoretical and experimental studies on dielectric microcavities, which play a significant role in fundamental and applied research. The basic concepts and theories are introduced. Experimental techniques for fabrication of microcavities and optical characterization are described. Starting from undeformed cavities, the review moves on to weak deformation, intermediate deformation with mixed phase space, and then strong deformation with full ray chaos. Non-Hermitian physics such as avoided resonance crossings and exceptional points are covered along with various dynamical tunneling phenomena. Some specific topics such as unidirectional output, beam shifts, wavelength-scale microcavities, and rotating microcavities are discussed. The open microdisk and microsphere cavities are ideal model systems for the studies on wave chaos and non-Hermitian physics. © 2015 American Physical Society. Source

Engelmann M.,Otto Von Guericke University of Magdeburg
Nature protocols | Year: 2011

Testing declarative memory in laboratory rodents can provide insights into the fundamental mechanisms underlying this type of learning and memory processing, and these insights are likely to be applicable to humans. Here we provide a detailed description of the social discrimination procedure used to investigate recognition memory in rats and mice, as established during the last 20 years in our laboratory. The test is based on the use of olfactory signals for social communication in rodents; this involves a direct encounter between conspecifics, during which the investigatory behavior of the experimental subject serves as an index for learning and memory performance. The procedure is inexpensive, fast and very reliable, but it requires well-trained human observers. We include recent modifications to the procedure that allow memory extinction to be investigated by retroactive and proactive interference, and that enable the dissociated analysis of the central nervous processing of the volatile fraction of an individual's olfactory signature. Depending on the memory retention interval under study (short-term memory, intermediate-term memory, long-term memory or long-lasting memory), the protocol takes ~10 min or up to several days to complete. Source

Flohe L.,Otto Von Guericke University of Magdeburg
Biotechnology Advances | Year: 2012

Parasitic trypanosomatids (Kinetoplastida) are the causative agents of devastating and hard-to-treat diseases such as African sleeping sickness, Chagas disease and various forms of Leishmaniasis. Altogether they affect > 30. Million patients, account for half a million fatalities p.a. and cause substantial economical problems in the Third World due to human morbidity and life stock losses. The design of efficacious and safe drugs is expected from inhibition of metabolic pathways that are unique and essential to the parasite and absent in the host. In this respect, the trypanothione system first detected in the insect-pathogenic trypanosomatid Crithidia fasciculata qualified as an attractive drug target area. The existence of the system in pathogenic relatives was established by homology cloning and PCR. The vital importance of the system was verified in Trypanosoma brucei by dsRNA technology or knock-out in other trypanosomatids, respectively, and is explained by its pivotal role in the parasite's antioxidant defense and DNA synthesis. The key system component is the bis-glutathionyl derivative of spermidine, trypanothione. It is the proximal reductant of tryparedoxin which substitutes for thioredoxin-, glutaredoxin- and glutathione-dependent reactions. Heterologous expression, functional characterization and crystallization of recombinant system components finally enable structure-based rational inhibitor design. © 2011 Elsevier Inc. Source

Several types of sensors used in physics are based on the detection of splittings of resonant frequencies or energy levels. We propose here to operate such sensors at so-called exceptional points, which are degeneracies in open wave and quantum systems where at least two resonant frequencies or energy levels and the corresponding eigenstates coalesce. We argue that this has great potential for enhanced sensitivity provided that one is able to measure both the frequency splitting as well as the linewidth splitting. We apply this concept to a microcavity sensor for single-particle detection. An analytical theory and numerical simulations prove a more than threefold enhanced sensitivity. We discuss the possibility to resolve individual linewidths using active optical microcavities. © 2014 American Physical Society. Source

Edelmann F.T.,Otto Von Guericke University of Magdeburg
Advances in Organometallic Chemistry | Year: 2013

This review provides a comprehensive overview of the most recent progress in chemistry and applications of metal complexes containing heteroallylic ligands such as amidinates and guanidinates. Clearly, the coordination chemistry of amidinates and guanidinates has reached a state of maturity and continues to be a highly popular area of research. These heteroallylic ligand systems allow a wealth of variations and modifications, making a larger ligand library available than in cyclopentadienyl chemistry. Exciting results have been obtained in recent years for almost any metallic elements in the Periodic Table. Truly remarkable developments include, for example, the chemistry of cyclic amidinate-based silylenes and the stabilization of metal-metal quadruply and quintuple bonds by amidinate and guanidinate ligands. The range of applications for metal amidinates and guanidinates in homogeneous catalysis has considerably broadened in recent years. In materials science, alkyl-substituted metal amidinates and guanidinates are now well established as volatile precursors for a variety of ALD and MOCVD processes. Without doubt the chemistry of metal amidinates and guanidinates and related complexes will continue to produce exciting results and applications in the years to come. © 2013 Elsevier Inc. Source

Discover hidden collaborations