Bells Corners, Canada
Bells Corners, Canada

The Ottawa Hospital Research Institute , formerly Ottawa Health Research Institute, is a non-profit academic health research institute located in the city of Ottawa. It was formed in 2001 following the merger of three Ottawa hospitals. The Ottawa Hospital Research Institute is the research arm of The Ottawa Hospital and affiliated with the University of Ottawa.As of April 2013, the Ottawa Hospital Research Institute houses approximately 560 scientists and clinical investigators, 475 students and research fellows, and 700 support staff. It has five research programs: Cancer Therapeutics; Chronic Disease; Clinical Epidemiology; Regenerative Medicine; and Neuroscience.Ronald G. Worton was the research institute's founding CEO and Scientific Director in 2001. In 2007, Duncan Stewart, formerly Chief Cardiologist of St. Michael's Hospital in Toronto and Director of Cardiology of University of Toronto, took over as CEO and Scientific Director. Wikipedia.


Time filter

Source Type

Health administrative data is increasingly being used for chronic disease surveillance. This study explored agreement between administrative and survey data for ascertainment of seven key chronic diseases, using individually linked data from a large population of individuals in Ontario, Canada. All adults who completed any one of three cycles of the Canadian Community Health Survey (2001, 2003 or 2005) and agreed to have their responses linked to provincial health administrative data were included. The sample population included 85,549 persons. Previously validated case definitions for myocardial infarction, asthma, diabetes, chronic lung disease, stroke, hypertension and congestive heart failure based on hospital and physician billing codes were used to identify cases in health administrative data and these were compared with self-report of each disease from the survey. Concordance was measured using the Kappa statistic, percent positive and negative agreement and prevalence estimates. Agreement using the Kappa statistic was good or very good (kappa range: 0.66-0.80) for diabetes and hypertension, moderate for myocardial infarction and asthma and poor or fair (kappa range: 0.29-0.36) for stroke, congestive heart failure and COPD. Prevalence was higher in health administrative data for all diseases except stroke and myocardial infarction. Health Utilities Index scores were higher for cases identified by health administrative data compared with self-reported data for some chronic diseases (acute myocardial infarction, stroke, heart failure), suggesting that administrative data may pick up less severe cases. In the general population, discordance between self-report and administrative data was large for many chronic diseases, particularly disease with low prevalence, and differences were not easily explained by individual and disease characteristics.


Hasler G.,University of Bern | Northoff G.,Ottawa Health Research Institute
Molecular Psychiatry | Year: 2011

Psychiatry research lacks an in-depth understanding of mood disorders phenotypes, leading to limited success of genetics studies of major depressive disorder (MDD). The dramatic progress in safe and affordable magnetic resonance-based imaging methods has the potential to identify subtle abnormalities of neural structures, connectivity and function in mood disordered subjects. This review paper presents strategies to improve the phenotypic definition of MDD by proposing imaging endophenotypes derived from magnetic resonance spectroscopy measures, such as cortical gamma-amino butyric acid (GABA) and glutamate/glutamine concentrations, and from measures of resting-state activity and functional connectivity. The proposed endophenotypes are discussed regarding specificity, mood state-independence, heritability, familiarity, clinical relevance and possible associations with candidate genes. By improving phenotypic definitions, the discovery of new imaging endophenotypes will increase the power of candidate gene and genome-wide associations studies. It will also help to develop and evaluate novel therapeutic treatments and enable clinicians to apply individually tailored therapeutic approaches. Finally, improvements of the phenotypic definition of MDD based on neuroimaging measures will contribute to a new classification system of mood disorders based on etiology and pathophysiology. © 2011 Macmillan Publishers Limited All rights reserved.


Northoff G.,Ottawa Health Research Institute
Schizophrenia bulletin | Year: 2015

Schizophrenia is a multifaceted disorder with various symptoms including auditory hallucinations, egodisturbances, passivity phenomena, and delusions. Recent neurobiological approaches have focused on, especially, the abnormal contents of consciousness, the "substantive parts" as James said, to associate them with the neural mechanisms related to sensory, motor, and cognitive functions, and the brain's underlying stimulus-induced or task-evoked activity. This leaves open, however, the neural mechanisms that provide the temporal linkage or glue between the various contents, the transitive parts that makes possible the "stream of consciousness." Interestingly, schizophrenic patients seem to suffer from abnormalities specifically in the "transitive parts" when they experience contents as temporally disconnected or fragmented which in phenomenological psychiatry has been described as "temporal fragmentation." The aim of this article is to develop so-called neurophenomenal hypothesis about the direct relationship between phenomenal features of the "stream of consciousness," the "transitive parts," and the specific neuronal mechanisms in schizophrenia as based on healthy subjects. Rather than emphasizing stimulus-induced and task-evoked activity and sensory and lateral prefrontal cortical regions as in neurocognitive approaches with their focus on the "substantive parts," the focus shifts here to the brain's intrinsic activity, its resting state activity, which may account for the temporal linkage or glue between the contents of consciousness, the transitive parts. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.


Bentzinger C.F.,Ottawa Health Research Institute
Cold Spring Harbor perspectives in biology | Year: 2012

The genesis of skeletal muscle during embryonic development and postnatal life serves as a paradigm for stem and progenitor cell maintenance, lineage specification, and terminal differentiation. An elaborate interplay of extrinsic and intrinsic regulatory mechanisms controls myogenesis at all stages of development. Many aspects of adult myogenesis resemble or reiterate embryonic morphogenetic episodes, and related signaling mechanisms control the genetic networks that determine cell fate during these processes. An integrative view of all aspects of myogenesis is imperative for a comprehensive understanding of muscle formation. This article provides a holistic overview of the different stages and modes of myogenesis with an emphasis on the underlying signals, molecular switches, and genetic networks.


Blier P.,Ottawa Health Research Institute
Philosophical transactions of the Royal Society of London. Series B, Biological sciences | Year: 2013

The serotonin (5-HT, 5-hydroxytryptamine) system has been implicated in the pathogenesis of major depressive disorder (MDD). The case for its contribution to the therapeutic efficacy of a wide variety of antidepressant treatments is, however, much stronger. All antidepressant strategies have been shown to enhance 5-HT transmission in the brain of laboratory animals. Catecholamines, norepinephrine (NE) and dopamine (DA) can also play a pivotal role in the mechanism of action of certain antidepressant strategies. The enhancement of 5-HT transmission by selective serotonin reuptake inhibitors, which leads to a dampening of the activity of NE and DA neurons, may account in part for the low remission rate achieved with these medications and/or the residuals symptoms after remission is achieved. The functional connectivity between the 5-HT, NE and DA systems can be used to understand the mechanism of action of a wide variety of augmentation strategies in treatment-resistant MDD. Proof-of-concept studies have shown that antidepressant medications with complementary mechanisms of action on monoaminergic systems can double the remission rate achieved in a trial of standard duration. Novel approaches are also being used to treat MDD, which also appear to involve the monoaminergic system(s) to a varying extent.


Blier P.,Ottawa Health Research Institute
Journal of Clinical Psychiatry | Year: 2013

Residual symptoms are a common hindrance to daily life for patients with major depressive disorder. Even after antidepressant treatment has led patients to meet remission criteria, almost all patients have at least 1 symptom that remains unresolved. These symptoms can increase the risk for relapse, a chronic course, and suicide attempts. Residual symptoms are lingering symptoms that do not resolve with treatment of the depressive episode, and they should be distinguished from symptoms of comorbid psychiatric or medical conditions and medication side effects. By understanding how various antidepressants affect the 3 monoamine systems of serotonin, norepinephrine, and dopamine, clinicians can select treatments based on the most effective mechanism of action. Dual-action agents show promise for alleviating depressive symptoms that do not resolve with single-action agents. Medications that increase norepinephrine or dopamine neurotransmission may improve several common residual symptoms left after treatment with serotonin-specific agents. Treatment strategies like adjunctive therapies and dosing options are given for common residual symptoms, including sleep difficulties, sexual dysfunction, and pain. For patients to truly regain their quality of life, clinicians must target residual symptoms. © Copyright 2013 Physicians Postgraduate Press, Inc.


Duncan N.W.,Ottawa Health Research Institute | Northoff G.,Ottawa Health Research Institute
Journal of Psychiatry and Neuroscience | Year: 2013

Studies of intrinsic brain activity in the resting state have become increasingly common. A productive discussion of what analysis methods are appropriate, of the importance of physiologic correction and of the potential interpretations of results has been ongoing. However, less attention has been paid to factors other than physiologic noise that may confound resting-state experiments. These range from straightforward factors, such as ensuring that participants are all instructed in the same manner, to more obscure participant-related factors, such as body weight. We provide an overview of such potentially confounding factors, along with some suggested approaches for minimizing their impact. A particular theme that emerges from the overview is the range of systematic differences between types of study groups (e.g., between patients and controls) that may influence resting-state study results. © 2013 Canadian Medical Association.


Patent
Ottawa Health Research Institute | Date: 2014-02-14

The present invention provides novel stem cells, nucleotide sequences and proteins therefrom. More specifically, the present invention provides Pax7+/Myf5 stem cells and methods for identifying and isolating them. Also provided is a MEGF10 nucleotide sequence and protein.


Patent
Ottawa Health Research Institute | Date: 2012-01-13

The present invention provides novel stem cells, nucleotide sequences and proteins therefrom. More specifically, the present invention provides Pax7+/Myf5 stem cells and methods for identifying and isolating them. Also provided is a MEGF10 nucleotide sequence and protein.


Patent
Ottawa Health Research Institute and University of Ottawa | Date: 2012-12-19

The present invention provides interpenetrating polymeric networks (IPNs), and related methods and compositions. The hydrogel material of this invention comprises an interpenetrating network of two or more polymer networks, wherein at least one of the polymer networks is based on a biopolymer. Also provided is a method of producing the hydrogel material comprising, combining a first polymeric network with a second polymeric network, wherein the first polymeric network or the second polymeric network is based on a biopolymer. The present application also discloses devices manufactured from the IPN hydrogel material and uses thereof.

Loading Ottawa Health Research Institute collaborators
Loading Ottawa Health Research Institute collaborators