Time filter

Source Type

Saint-Sauveur-en-Rue, France

Faivre L.,French Institute of Health and Medical Research | Parietti V.,University Paris Diderot | Sineriz F.,OTR3 Company | Chantepie S.,University Paris Est Creteil | And 5 more authors.
Stem Cell Research and Therapy

Background: Expansion protocols aim at both increasing the number of umbilical cord blood (UCB) hematopoietic stem cells and progenitor cells (HSPCs) and reducing the period of neutropenia in UCB HSPC graft. Because glycosaminoglycans (GAGs) are known to be important components of the hematopoietic niche and to modulate growth factor effects, we explored the use of GAG mimetic OTR4131 to potentiate HSPC's in vitro expansion and in vivo engraftment. Methods: UCB CD34+ cells were expanded with serum-free medium, SCF, TPO, FLT3-lig and G-CSF during 12 days in the absence or the presence of increasing OTR4131 concentrations (0-100 μg/mL). Proliferation ratio, cell viability and phenotype, functional assays, migration capacity and NOD-scid/γc-/- mice engraftment were assessed after expansion. Results: At Day 12, ratios of cell expansion were not significantly increased by OTR4131 treatment. Better total nucleated cell viability was observed with the use of 1 μg/mL GAG mimetic compared to control (89.6 % ± 3.7 % and 79.9 % ± 3.3 %, respectively). Phenotype analysis showed a decrease of monocyte lineage in the presence of OTR4131 and HSPC migration capacity was diminished when GAG mimetic was used at 10 μg/mL (10.9 % ± 4.1 % vs. 52.9 % ± 17.9 % for control). HSPC clonogenic capacities were similar whatever the culture conditions. Finally, in vivo experiments revealed that mice successfully engrafted in all conditions, even if some differences were observed during the first month. Three months after graft, bone marrow chimerism and blood subpopulations were similar in both groups. Conclusions: UCB HSPCs ex-vivo expansion in the presence of OTR4131 is a safe approach that did not modify cell function and engraftment capacities. In our experimental conditions, the use of a GAG mimetic did not, however, allow increasing cell expansion or optimizing their in vivo engraftment. © 2016 Faivre et al. Source

Chevalier F.,University Paris Est Creteil | Chevalier F.,French Institute of Health and Medical Research | Lavergne M.,ABCell Bio | Negroni E.,French Institute of Health and Medical Research | And 6 more authors.
Stem Cell Research

Human circulating endothelial progenitor cells isolated from peripheral blood generate in culture cells with features of endothelial cells named late-outgrowth endothelial colony-forming cells (ECFC). In adult blood, ECFC display a constant quantitative and qualitative decline during life span. Even after expansion, it is difficult to reach the cell dose required for cell therapy of vascular diseases, thus limiting the clinical use of these cells. Glycosaminoglycans (GAG) are components from the extracellular matrix (ECM) that are able to interact and potentiate heparin binding growth factor (HBGF) activities. According to these relevant biological properties of GAG, we designed a GAG mimetic having the capacity to increase the yield of ECFC production from blood and to improve functionality of their endothelial outgrowth. We demonstrate that the addition of [OTR4131] mimetic during the isolation process of ECFC from Cord Blood induces a 3 fold increase in the number of colonies. Moreover, addition of [OTR4131] to cell culture media improves adhesion, proliferation, migration and self-renewal of ECFC. We provide evidence showing that GAG mimetics may have great interest for cell therapy applied to vascular regeneration therapy and represent an alternative to exogenous growth factor treatments to optimize potential therapeutic properties of ECFC. © 2014. Source

Chevalier F.,University Paris Est Creteil | Chevalier F.,French Institute of Health and Medical Research | Arnaud D.,University of Paris 13 | Henault E.,University Paris Est Creteil | And 10 more authors.
European Cells and Materials

Critical limb ischaemia often leads to amputation of the limb and potential mortality. Moreover, there are still significant problems with current therapeutic treatments, according to poor revascularisation of degenerated tissue probably due to modifications within the microenvironment. This study is focused on the changes of structure and bioactivity of glycosaminoglycans (GAGs), especially heparan sulphate (HS) and chondroitin sulphate (CS) in rat Extensor Digitorum Longus (EDL) muscle after ischaemia. Male Wistar rats were subjected to ischaemic-injury by ligation of the neurovascular trunk accompanying EDL-tendon. After 4, 8, 15, 21, 60 and 90 d, the rats were sacrificed and the muscles were collected and submitted to histological, biochemical and gene expression assays. We demonstrated that ischaemia induced modification of expression of enzymes involved in GAG biosynthesis which correlated with significant changes in HS and CS structural features such as size and sulphation pattern. These major structural changes are associated to modifications of GAG abilities to bind growth factors and to modulate cell activity. Moreover, a CS hallmark of injury is maintained as well after the regeneration process. Finally, we showed the relevance of the role of this glycanic matrix remodelling, since a GAG mimetic treatment accelerated muscle repair after ischaemia. © 2015, University of Waterloo. All rights reserved. Source

Discover hidden collaborations