Time filter

Source Type

Rio de Janeiro, Brazil

Calvet C.M.,University of California at San Francisco | Calvet C.M.,Oswaldo Cruz Institute IOC | Vieira D.F.,University of California at San Francisco | Choi J.Y.,Scripps Florida | And 10 more authors.
Journal of Medicinal Chemistry | Year: 2014

CYP51 is a P450 enzyme involved in the biosynthesis of the sterol components of eukaryotic cell membranes. CYP51 inhibitors have been developed to treat infections caused by fungi, and more recently the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. To specifically optimize drug candidates for T. cruzi CYP51 (TcCYP51), we explored the structure-activity relationship (SAR) of a N-indolyl-oxopyridinyl-4- aminopropanyl-based scaffold originally identified in a target-based screen. This scaffold evolved via medicinal chemistry to yield orally bioavailable leads with potent anti-T. cruzi activity in vivo. Using an animal model of infection with a transgenic T. cruzi Y luc strain expressing firefly luciferase, we prioritized the biaryl and N-arylpiperazine analogues by oral bioavailability and potency. The drug-target complexes for both scaffold variants were characterized by X-ray structure analysis. Optimization of both binding mode and pharmacokinetic properties of these compounds led to potent inhibitors against experimental T. cruzi infection. © 2014 American Chemical Society. Source

Choi J.Y.,Scripps Florida | Calvet C.M.,University of California at San Francisco | Calvet C.M.,Oswaldo Cruz Institute IOC | Gunatilleke S.S.,University of California at San Francisco | And 6 more authors.
Journal of Medicinal Chemistry | Year: 2013

A new series of 4-aminopyridyl-based lead inhibitors targeting Trypanosoma cruzi CYP51 (TcCYP51) has been developed using structure-based drug design as well as structure-property relationship (SPR) analyses. The screening hit starting point, LP10 (KD ≤ 42 nM; EC50 = 0.65 μM), has been optimized to give the potential leads 14t, 27i, 27q, 27r, and 27t, which have low-nanomolar binding affinity to TcCYP51 and significant activity against T. cruzi amastigotes cultured in human myoblasts (EC50 = 14-18 nM for 27i and 27r). Many of the optimized compounds have improved microsome stability, and most are selective against human CYPs 1A2, 2D6, and 3A4 (<50% inhibition at 1 μM). A rationale for the improvement in microsome stability and selectivity of inhibitors against human metabolic CYP enzymes is presented. In addition, the binding mode of 14t with the Trypanosoma brucei CYP51 (TbCYP51) orthologue has been characterized by X-ray structure analysis. © 2013 American Chemical Society. Source

Grella M.D.,University of Campinas | Savino A.G.,University of Campinas | Paulo D.F.,University of Campinas | Mendes F.M.,University of Campinas | And 4 more authors.
Acta Tropica | Year: 2015

Species identification is an essential step in the progress and completion of work in several areas of biological knowledge, but it is not a simple process. Due to the close phylogenetic relationship of certain species, morphological characters are not always sufficiently distinguishable. As a result, it is necessary to combine several methods of analysis that contribute to a distinct categorization of taxa. This study aimed to raise diagnostic characters, both morphological and molecular, for the correct identification of species of the genus Chrysomya (Diptera: Calliphoridae) recorded in the New World, which has continuously generated discussion about its taxonomic position over the last century. A clear example of this situation was the first record of Chrysomya rufifacies in Brazilian territory in 2012. However, the morphological polymorphism and genetic variability of Chrysomya albiceps studied here show that both species (C. rufifacies and C. albiceps) share very similar character states, leading to misidentification and subsequent registration error of species present in our territory. This conclusion is demonstrated by the authors, based on a review of the material deposited in major scientific collections in Brazil and subsequent molecular and phylogenetic analysis of these samples. Additionally, we have proposed a new taxonomic key to separate the species of Chrysomya found on the American continent, taking into account a larger number of characters beyond those available in current literature. © 2014 Elsevier B.V. Source

Gunatilleke S.S.,University of California at San Francisco | Calvet C.M.,University of California at San Francisco | Calvet C.M.,Oswaldo Cruz Institute IOC | Johnston J.B.,University of California at San Francisco | And 10 more authors.
PLoS Neglected Tropical Diseases | Year: 2012

Background: Chagas Disease, a WHO- and NIH-designated neglected tropical disease, is endemic in Latin America and an emerging infection in North America and Europe as a result of population moves. Although a major cause of morbidity and mortality due to heart failure, as well as inflicting a heavy economic burden in affected regions, Chagas Disease elicits scant notice from the pharmaceutical industry because of adverse economic incentives. The discovery and development of new routes to chemotherapy for Chagas Disease is a clear priority. Methodology/Principal Findings: The similarity between the membrane sterol requirements of pathogenic fungi and those of the parasitic protozoon Trypanosoma cruzi, the causative agent of Chagas human cardiopathy, has led to repurposing anti-fungal azole inhibitors of sterol 14α-demethylase (CYP51) for the treatment of Chagas Disease. To diversify the therapeutic pipeline of anti-Chagasic drug candidates we exploited an approach that included directly probing the T. cruzi CYP51 active site with a library of synthetic small molecules. Target-based high-throughput screening reduced the library of ~104,000 small molecules to 185 hits with estimated nanomolar K D values, while cross-validation against T. cruzi-infected skeletal myoblast cells yielded 57 active hits with EC 50 <10 μM. Two pools of hits partially overlapped. The top hit inhibited T. cruzi with EC 50 of 17 nM and was trypanocidal at 40 nM. Conclusions/Significance: The hits are structurally diverse, demonstrating that CYP51 is a rather permissive enzyme target for small molecules. Cheminformatic analysis of the hits suggests that CYP51 pharmacology is similar to that of other cytochromes P450 therapeutic targets, including thromboxane synthase (CYP5), fatty acid ω-hydroxylases (CYP4), 17α-hydroxylase/17,20-lyase (CYP17) and aromatase (CYP19). Surprisingly, strong similarity is suggested to glutaminyl-peptide cyclotransferase, which is unrelated to CYP51 by sequence or structure. Lead compounds developed by pharmaceutical companies against these targets could also be explored for efficacy against T. cruzi. © 2012 Gunatilleke et al. Source

Choi J.Y.,Scripps Florida | Calvet C.M.,University of California at San Francisco | Calvet C.M.,Oswaldo Cruz Institute IOC | Vieira D.F.,University of California at San Francisco | And 6 more authors.
ACS Medicinal Chemistry Letters | Year: 2014

Sterol 14α-demethylase (CYP51) is an important therapeutic target for fungal and parasitic infections due to its key role in the biosynthesis of ergosterol, an essential component of the cell membranes of these pathogenic organisms. We report the development of potent and selective d-tryptophan-derived inhibitors of T. cruzi CYP51. Structural information obtained from the cocrystal structure of CYP51 and (R)-2, which is >1000-fold more potent than its enantiomer (S)-1, was used to guide design of additional analogues. The in vitro efficacy data presented here for (R)-2-(R)-8, together with preliminary in vitro pharmacokinetic data suggest that this new CYP51 inhibitor scaffold series has potential to deliver drug candidates for treatment of T. cruzi infections. © 2014 American Chemical Society. Source

Discover hidden collaborations