Oswaldo Cruz Institute IOC

Rio de Janeiro, Brazil

Oswaldo Cruz Institute IOC

Rio de Janeiro, Brazil
Time filter
Source Type

Calvet C.M.,University of California at San Francisco | Calvet C.M.,Oswaldo Cruz Institute IOC | Vieira D.F.,University of California at San Francisco | Kellar D.,University of California at San Francisco | And 8 more authors.
Journal of Medicinal Chemistry | Year: 2014

CYP51 is a P450 enzyme involved in the biosynthesis of the sterol components of eukaryotic cell membranes. CYP51 inhibitors have been developed to treat infections caused by fungi, and more recently the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. To specifically optimize drug candidates for T. cruzi CYP51 (TcCYP51), we explored the structure-activity relationship (SAR) of a N-indolyl-oxopyridinyl-4- aminopropanyl-based scaffold originally identified in a target-based screen. This scaffold evolved via medicinal chemistry to yield orally bioavailable leads with potent anti-T. cruzi activity in vivo. Using an animal model of infection with a transgenic T. cruzi Y luc strain expressing firefly luciferase, we prioritized the biaryl and N-arylpiperazine analogues by oral bioavailability and potency. The drug-target complexes for both scaffold variants were characterized by X-ray structure analysis. Optimization of both binding mode and pharmacokinetic properties of these compounds led to potent inhibitors against experimental T. cruzi infection. © 2014 American Chemical Society.

Calvet C.M.,University of California at San Francisco | Calvet C.M.,Oswaldo Cruz Institute IOC | Gunatilleke S.S.,University of California at San Francisco | Gunatilleke S.S.,Seattle University | And 4 more authors.
Journal of Medicinal Chemistry | Year: 2013

A new series of 4-aminopyridyl-based lead inhibitors targeting Trypanosoma cruzi CYP51 (TcCYP51) has been developed using structure-based drug design as well as structure-property relationship (SPR) analyses. The screening hit starting point, LP10 (KD ≤ 42 nM; EC50 = 0.65 μM), has been optimized to give the potential leads 14t, 27i, 27q, 27r, and 27t, which have low-nanomolar binding affinity to TcCYP51 and significant activity against T. cruzi amastigotes cultured in human myoblasts (EC50 = 14-18 nM for 27i and 27r). Many of the optimized compounds have improved microsome stability, and most are selective against human CYPs 1A2, 2D6, and 3A4 (<50% inhibition at 1 μM). A rationale for the improvement in microsome stability and selectivity of inhibitors against human metabolic CYP enzymes is presented. In addition, the binding mode of 14t with the Trypanosoma brucei CYP51 (TbCYP51) orthologue has been characterized by X-ray structure analysis. © 2013 American Chemical Society.

Calvet C.M.,University of California at San Francisco | Calvet C.M.,Oswaldo Cruz Institute IOC | Vieira D.F.,University of California at San Francisco | Gunatilleke S.S.,University of California at San Francisco | And 4 more authors.
ACS Medicinal Chemistry Letters | Year: 2014

Sterol 14α-demethylase (CYP51) is an important therapeutic target for fungal and parasitic infections due to its key role in the biosynthesis of ergosterol, an essential component of the cell membranes of these pathogenic organisms. We report the development of potent and selective d-tryptophan-derived inhibitors of T. cruzi CYP51. Structural information obtained from the cocrystal structure of CYP51 and (R)-2, which is >1000-fold more potent than its enantiomer (S)-1, was used to guide design of additional analogues. The in vitro efficacy data presented here for (R)-2-(R)-8, together with preliminary in vitro pharmacokinetic data suggest that this new CYP51 inhibitor scaffold series has potential to deliver drug candidates for treatment of T. cruzi infections. © 2014 American Chemical Society.

Gunatilleke S.S.,University of California at San Francisco | Calvet C.M.,University of California at San Francisco | Calvet C.M.,Oswaldo Cruz Institute IOC | Johnston J.B.,University of California at San Francisco | And 10 more authors.
PLoS Neglected Tropical Diseases | Year: 2012

Background: Chagas Disease, a WHO- and NIH-designated neglected tropical disease, is endemic in Latin America and an emerging infection in North America and Europe as a result of population moves. Although a major cause of morbidity and mortality due to heart failure, as well as inflicting a heavy economic burden in affected regions, Chagas Disease elicits scant notice from the pharmaceutical industry because of adverse economic incentives. The discovery and development of new routes to chemotherapy for Chagas Disease is a clear priority. Methodology/Principal Findings: The similarity between the membrane sterol requirements of pathogenic fungi and those of the parasitic protozoon Trypanosoma cruzi, the causative agent of Chagas human cardiopathy, has led to repurposing anti-fungal azole inhibitors of sterol 14α-demethylase (CYP51) for the treatment of Chagas Disease. To diversify the therapeutic pipeline of anti-Chagasic drug candidates we exploited an approach that included directly probing the T. cruzi CYP51 active site with a library of synthetic small molecules. Target-based high-throughput screening reduced the library of ~104,000 small molecules to 185 hits with estimated nanomolar K D values, while cross-validation against T. cruzi-infected skeletal myoblast cells yielded 57 active hits with EC 50 <10 μM. Two pools of hits partially overlapped. The top hit inhibited T. cruzi with EC 50 of 17 nM and was trypanocidal at 40 nM. Conclusions/Significance: The hits are structurally diverse, demonstrating that CYP51 is a rather permissive enzyme target for small molecules. Cheminformatic analysis of the hits suggests that CYP51 pharmacology is similar to that of other cytochromes P450 therapeutic targets, including thromboxane synthase (CYP5), fatty acid ω-hydroxylases (CYP4), 17α-hydroxylase/17,20-lyase (CYP17) and aromatase (CYP19). Surprisingly, strong similarity is suggested to glutaminyl-peptide cyclotransferase, which is unrelated to CYP51 by sequence or structure. Lead compounds developed by pharmaceutical companies against these targets could also be explored for efficacy against T. cruzi. © 2012 Gunatilleke et al.

PubMed | Oswaldo Cruz Institute IOC and Evandro Chagas National Institute of Infectology INI
Type: Journal Article | Journal: Parasite immunology | Year: 2016

Cutaneous leishmaniasis (CL) is an important public health issue worldwide. The control of Leishmania infection depends on cellular immune mechanisms, and the inflammatory response may contribute to pathogenesis. A beneficial role of CD8(+) T lymphocytes has been proposed; nevertheless, other studies suggest a cytotoxic role of CD8(+) T lymphocytes involved in tissue damage, showing controversial role of these cells. The goal of the current study was to understand the immunopathology of CL and determine the profile of cytotoxic cells--such as CD4(+) T, natural killer and natural killer T cells--that might be involved in triggering immunological mechanisms, and may lead to cure or disease progression. The frequencies of cytotoxic cell populations in peripheral blood, obtained from patients with active disease, during treatment and after clinical healing, were assessed by flow cytometry. Cytotoxicity could not be related to a deleterious role in Leishmania braziliensis infection, as patients with active CL showed similar percentages of degranulation to healthy individuals (HI). Cured patients exhibited a lower percentage of degranulating cells, which may be due to a downregulation of the immune response. The understanding of the immunopathological mechanisms involved in CL and the commitment of cytotoxic cells enables improvements in therapeutic strategies.

PubMed | Oswaldo Cruz Foundation, Laboratory of Diagnostic Technology, Oswaldo Cruz Institute IOC and Laboratory of Clinical Epidemiology
Type: Journal Article | Journal: Medical mycology | Year: 2015

Sporotrichosis is a subcutaneous mycosis with worldwide distribution, especially in tropical and subtropical areas. Zoonotic transmission is described with cats being the main animal species involved. The occurrence of severe feline sporotrichosis with high fungal levels demonstrates the susceptibility of cats to this disease and the importance of studying its pathogenesis. This study describes the leukocytes profile in blood of cats with sporotrichosis by flow cytometry and its correlation with histopathology and fungal load. The cats with sporotrichosis were separated into groups L1, L2, and L3 (lesions at one, two, and three or more noncontiguous skin locations, respectively) and were classified as good, fair, or poor general conditions. The highest percentage of CD4+ cells was associated to L1 (P = .04) and to good general condition (P = .03). The percentage of CD8+ cells was greater in L2 and L3 (P = .01). CD8(low) expression occurred in 20 animals with sporotrichosis, mainly in L3 (P = .01) and was not observed in healthy controls. This expression was related to macrophage granulomas (P = .01) and predominated in cases with high fungal load. Altogether, the results indicated that control over feline sporotrichosis, with maintenance of a good general condition, fixed lesions, well-organized response and lower fungal load, is associated with increased CD4+ cells percentages. In contrast, a poor general condition, disseminated lesions and high fungal load were related to increased CD8+ cell percentages and increased expression of CD8(low). As conclusion these results point to an important role of the CD4:CD8 balance in determining the clinical outcome in feline sporotrichosis.

Marin M.A.,Oswaldo Cruz Institute IOC | Vicente A.C.P.,Oswaldo Cruz Institute IOC
F1000Research | Year: 2013

Background: Vibrio cholerae, the etiologic agent of cholera, is indigenous to aquatic environments. The V. cholerae genome consists of two chromosomes; the smallest of these harbors a large gene capture and excision system called the superintegron (SI), of ~120 kbp. The flexible nature of the SI that results from gene cassette capture, deletion and rearrangement is thought to make it a hotspot of V. cholerae diversity, but beyond the basic structure it is not clear if there is a core genome in the SI and if so how it is structured. The aim of this study was to explore the core genome structure and the differences in gene content among strains of V. cholerae. Methods: From the complete genomes of seven V. cholerae and one Vibrio mimicus representative strains, we recovered the SI sequences based on the locations of the structural gene IntI4 and the V. cholerae repeats. Analysis of the pangenome, including cluster analysis of functional genes, pangenome profile analysis, genetic variation analysis of functional genes, strain evolution analysis and function enrichment analysis of gene clusters, was performed using a pangenome analysis pipeline in addition to the R scripts, splitsTree4 and genoPlotR. Results and conclusions: Here, we reveal the genetic architecture of the V. cholerae SI. It contains eight core genes when V. mimicus is included and 21 core genes when only V. cholerae strains are considered; many of them are present in several copies. The V. cholerae SI has an open pangenome, which means that V. cholerae may be able to import new gene cassettes to SI. The set of dispensable SI genes is influenced by the niche and type species. The core genes are distributed along the SI, apparently without a position effect. © 2013 Marin MA and Vicente ACP.

Thompson C.C.,Oswaldo Cruz Institute IOC | Freitas F.S.,Oswaldo Cruz Institute IOC | Marin M.A.,Oswaldo Cruz Institute IOC | Fonseca E.L.,Oswaldo Cruz Institute IOC | And 2 more authors.
Infection, Genetics and Evolution | Year: 2011

In recent years, the frequency of cholera epidemics across Africa has increased significantly with thousands of people dying each year. However, there still exists a lack of information concerning the Vibrio cholerae O1 lineages driving early and contemporary epidemics since the seventh cholera pandemic started in the continent. This compromises the understanding of the forces determining the epidemiology of cholera in Africa and its control. This study aimed to analyze a collection of V. cholerae O1 strains from the beginning of the seventh cholera pandemic in Ghana and to compare them with recent isolates to understand the evolution of the cholera epidemic in Ghana. V. cholerae O1 strains were characterized by means of Multilocus Sequence Analysis (MLSA), genes from the virulence core genome (VCG), and genes related to the choleragenic phenotype. Our results revealed two major clusters of Ghanaian V. cholerae O1 strains, El Tor and Amazonia/Ghana. Concerning the virulence genes, all strains harbored the set of VCG and most were positive for VSP-II genomic island. The ctxB gene of the contemporary strains was characterized as Altered El Tor. The strains from 1970 to 1980 were susceptible to all antibiotics tested, except for the Amazonia/Ghana cluster that was resistant to aminoglycosides and carried the class 2 integron with the sat2-aadA1 arrangement. This study showed that distinct V. cholerae O1 were the determinants of cholera outbreaks in Ghana. Thus, in endemic regions, such as Africa, cholera can be caused by various V. cholerae O1 genotypes. © 2011 Elsevier B.V.

Loading Oswaldo Cruz Institute IOC collaborators
Loading Oswaldo Cruz Institute IOC collaborators