Time filter

Source Type

San Sebastián de los Reyes, Spain

Villalvilla A.,Osteoarticular Pathology Laboratory | da Silva J.A.,Federal University of Sao Carlos | da Silva J.A.,Federal University of Sergipe | Largo R.,Osteoarticular Pathology Laboratory | And 4 more authors.
Molecular Nutrition and Food Research | Year: 2014

Scope: Ginger has long been used in traditional Asian medicine to treat osteoarthritis. Indeed, scientific research has reported that ginger derivatives (GDs) have the potential to control innate immune responses. Given the widespread use and demonstrated properties of GDs, we set out to study their anti-inflammatory and anticatabolic properties in chondrocytes. Methods and results: 6-shogaol (6-S), the most active GD, was obtained from ginger. 6-S was not toxic as measured by MTT assay, and inhibited NO production and IL-6 and MCP-1 induced gene expression in LPSbut not in IL-1β-stimulated chondrocytes. 6-S also inhibited LPS-mediated ERK1/2 activation as well as NOS2 and MyD88 induced expression as determined by Western blot. Moreover, zymography revealed that 6-S inhibited matrix metalloproteinases (MMP) 2/9 induction in LPS-treated cells. Hydrated 6-S was modified to obtain a compound (SSi6) without 6-S potential anti-inflammatory properties. Both 6-S and SSi6 inhibited cathepsin-K activity. Conclusion: 6-S blocked TLR4-mediated innate immune responses and MMP induction in chondrocytes. These results, together with GDs-mediated cathepsin-K inhibition, suggest the potential for GDs use against cartilage and bone degradation. Therefore, considering that clinical trials involving oral administration of ginger achieved relevant nontoxic GDs serum concentrations, we suggest that a ginger-supplemented diet might reduce OA symptoms. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source

Villalvilla A.,Osteoarticular Pathology Laboratory | Gomez R.,Northumbria University | Largo R.,Osteoarticular Pathology Laboratory | Herrero-Beaumont G.,Osteoarticular Pathology Laboratory
International Journal of Molecular Sciences | Year: 2013

Cartilage is an avascular tissue and cartilage metabolism depends on molecule diffusion from synovial fluid and subchondral bone. Thus, nutrient availability is limited by matrix permeability according to the size and charge of the molecules. Matrix composition limits the access of molecules to chondrocytes, determining cell metabolism and cartilage maintenance. Lipids are important nutrients in chondrocyte metabolism and are available for these cells through de novo synthesis but also through diffusion from surrounding tissues. Cartilage status and osteoarthritis development depend on lipid availability. This paper reviews lipid transport and metabolism in cartilage. We also analyze signalling pathways directly mediated by lipids and those that involve mTOR pathways, both in normal and osteoarthritic cartilage. © 2013 by the authors; licensee MDPI, Basel, Switzerland. Source

Discover hidden collaborations