Carlsbad, CA, United States
Carlsbad, CA, United States

Time filter

Source Type

Patent
Ostendo Technologies | Date: 2015-10-01

Spatio-temporal light field cameras that can be used to capture the light field within its spatio temporally extended angular extent. Such cameras can be used to record 3D images, 2D images that can be computationally focused, or wide angle panoramic 2D images with relatively high spatial and directional resolutions. The light field cameras can be also be used as 2D/3D switchable cameras with extended angular extent. The spatio-temporal aspects of the novel light field cameras allow them to capture and digitally record the intensity and color from multiple directional views within a wide angle. The inherent volumetric compactness of the light field cameras make it possible to embed in small mobile devices to capture either 3D images or computationally focusable 2D images. The inherent versatility of these light field cameras makes them suitable for multiple perspective light field capture for 3D movies and video recording applications.


Patent
Ostendo Technologies | Date: 2016-08-17

A digital semiconductor structure (220) for bonding to a two-dimensional multicolor light emitting pixel array (210) comprises a plurality of two-dimensional arrays of pixel logic cells (228), a digital control logic region (229), a plurality of device contact pads (221) and a plurality of metal layers configured to interconnect the array of pixel logic cells (228) with the digital control logic region (229), connect the digital control logic region (229) with the plurality of device contact pads (221), and for interconnecting the array of pixel logic cells (228) with the two-dimensional multicolor light emitting pixel array (210).


Patent
Ostendo Technologies | Date: 2016-08-22

A 3D video processing system with integrated display is described wherein the huge data bandwidth demands on the source-to-display transmission medium is decreased by utilizing innovative 3D light field video data compression at the source along with innovative reconstruction of 3D light field video content from highly compressed 3D video data at the display. The display incorporates parallel processing pipelines integrated with a Quantum Photonics Imager for efficient data handling and light imaging.


Disclosed herein are multi-layered optically active regions for semiconductor light-emitting devices (LEDs) that incorporate intermediate carrier blocking layers, the intermediate carrier blocking layers having design parameters for compositions and doping levels selected to provide efficient control over the carrier injection distribution across the active regions to achieve desired device injection characteristics. Examples of embodiments discussed herein include, among others: a multiple-quantum-well variable-color LED operating in visible optical range with full coverage of RGB gamut, a multiple-quantum-well variable-color LED operating in visible optical range with an extended color gamut beyond standard RGB gamut, a multiple-quantum-well light-white emitting LED with variable color temperature, and a multiple-quantum-well LED with uniformly populated active layers.


Patent
Ostendo Technologies | Date: 2016-06-03

Disclosed herein are multi-layered optically active regions for semiconductor light-emitting devices (LEDs) that incorporate intermediate carrier blocking layers, the intermediate carrier blocking layers having design parameters for compositions and doping levels selected to provide efficient control over the carrier injection distribution across the active regions to achieve desired device injection characteristics. Examples of embodiments discussed herein include, among others: a multiple-quantum-well variable-color LED operating in visible optical range with full coverage of RGB gamut, a multiple-quantum-well variable-color LED operating in visible optical range with an extended color gamut beyond standard RGB gamut, a multiple-quantum-well light-white emitting LED with variable color temperature, and a multiple-quantum-well LED with uniformly populated active layers.


Disclosed herein are multi-layered optically active regions for semiconductor light-emitting devices (LEDs) that incorporate intermediate carrier blocking layers, the intermediate carrier blocking layers having design parameters for compositions and doping levels selected to provide efficient control over the carrier injection distribution across the active regions to achieve desired device injection characteristics. Examples of embodiments discussed herein include, among others: a multiple-quantum-well variable-color LED operating in visible optical range with full coverage of RGB gamut, a multiple-quantum-well variable-color LED operating in visible optical range with an extended color gamut beyond standard RGB gamut, a multiple-quantum-well light-white emitting LED with variable color temperature, and a multiple-quantum-well LED with uniformly populated active layers.


Disclosed herein are multi-layered optically active regions for semiconductor light-emitting devices (LEDs) that incorporate intermediate carrier blocking layers, the intermediate carrier blocking layers having design parameters for compositions and doping levels selected to provide efficient control over the carrier injection distribution across the active regions to achieve desired device injection characteristics. Examples of embodiments discussed herein include, among others: a multiple-quantum-well variable-color LED operating in visible optical range with full coverage of RGB gamut, a multiple-quantum-well variable-color LED operating in visible optical range with an extended color gamut beyond standard RGB gamut, a multiple-quantum-well light-white emitting LED with variable color temperature, and a multiple-quantum-well LED with uniformly populated active layers.


An innovative method for synthesis of compressed light fields is described. Compressed light fields are commonly generated by sub-sampling light field views. The suppressed views must then be synthesized at the display, utilizing information from the compressed light field. The present invention describes a method for view synthesis that utilizes depth information of the scene to reconstruct the absent views. An innovative view merging method coupled with an efficient hole filling procedure compensates for depth misregistrations and inaccuracies to produce realistic synthesized views for full parallax light field displays.


Patent
Ostendo Technologies | Date: 2015-10-01

Spatio-temporal light field cameras that can be used to capture the light field within its spatio temporally extended angular extent. Such cameras can be used to record 3D images, 2D images that can be computationally focused, or wide angle panoramic 2D images with relatively high spatial and directional resolutions. The light field cameras can be also be used as 2D/3D switchable cameras with extended angular extent. The spatio-temporal aspects of the novel light field cameras allow them to capture and digitally record the intensity and color from multiple directional views within a wide angle. The inherent volumetric compactness of the light field cameras make it possible to embed in small mobile devices to capture either 3D images or computationally focusable 2D images. The inherent versatility of these light field cameras makes them suitable for multiple perspective light field capture for 3D movies and video recording applications.


Patent
Ostendo Technologies | Date: 2015-07-14

Preprocessing of the light field input data for full parallax compressed light field 3D display systems is described. The described light field input data preprocessing can be utilized to format or extract information from input data, which can then be used by the light field compression system to further enhance the compression performance, reduce processing requirements, achieve real-time performance and reduce power consumption. This light field input data preprocessing performs a high-level 3D scene analysis and extracts data properties to be used by the light field compression system at different stages. As a result, rendering of redundant data is avoided while at the same rendering quality is improved.

Loading Ostendo Technologies collaborators
Loading Ostendo Technologies collaborators