Ospedale Pediatrico Bambino Gesu

Rome, Italy

Ospedale Pediatrico Bambino Gesu

Rome, Italy
SEARCH FILTERS
Time filter
Source Type

Patent
Sidam S.R.L., Ospedale Pediatrico Bambino Gesu and Evoluzione S.R.L. | Date: 2015-06-04

The device (1) for the treatment of esophageal stenoses, comprising at least a body (2) of elongated shape intended to be inserted within the esophagus of a patient, and a tubular sheath (4) mounted around said body (2) to define an interspace (5) between said body (2) and the tubular sheath (4), wherein it comprises a stiffening element (8, 9) accommodated in said interspace (5) and comprising a plurality of ribs (8) which extend along said interspace (5).


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: PHC-06-2014 | Award Amount: 2.99M | Year: 2015

Very preterm birth is a principal determinant of motor and cognitive impairment in later life. About 50 000 infants in the EU survive very preterm birth annually and are at much higher risk of cerebral palsy, visual and auditory deficits, impaired cognitive ability, psychiatric disorders and behavioural problems than infants born at term. However, the long term prognosis at initial discharge from hospital for each individual infant is unknown. Follow-up screening and prevention programmes aim to identify health problems early, enable interventions to improve outcome and to allow optimal management of health care. Despite the recognised importance of these programmes, little is known about their actual application and impact. These programmes consume significant resources because of the multidisciplinary staff required for clinical and developmental assessments and interventions, the coordination required to maintain contact with children after discharge and the time input from families. This project uses a unique resource the EPICE cohort of 6675 babies born before 32 weeks of gestational age and surviving to discharge home in 18 geographically diverse regions in 2011/2012 to assess the impact of these screening programmes on health, care and quality of life for very preterm infants and their families as well as on coverage, ability to meet needs, health equity and costs at the population-level. It will also generate new knowledge about assessment tools and methods. Four inter-related studies will be carried out in 11 EU countries by a multi-disciplinary consortium of clinicians (in obstetrics, paediatrics, and child development), researchers (in epidemiology, health services research and health economics) and a user organisation. Partners have the expertise to implement this project and the national and international renown to translate its result into better programmes and policies.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-IP | Phase: HEALTH.2013.2.2.1-4 | Award Amount: 16.45M | Year: 2013

DESIRE will focus on epileptogenic developmental disorders EDD, i.e. early onset epilepsies whose origin is closely related to developmental brain processes. A major cause of EDD are malformations of cortical development (MCD), either macroscopic or subtle. EDD are often manifested as epileptic encephalopathies (EE), i.e. conditions in which epileptic activity itself may contribute to severe cognitive and behavioral impairments. EDD are the most frequent drug-resistant pediatric epilepsies carrying a lifelong perspective of disability and reduced quality of life. Although EDD collectively represent a major medical and socio-economic burden, their molecular diagnosis, pathogenic mechanisms (PM) and rationale treatment are poorly understood. Specific objectives of DESIRE are to advance the state of the art with respect to: (1) the genetic and epigenetic causes and PM of EDD, particularly epileptogenic MCD, to elucidate molecular networks and disrupted protein complexes and search for common bases for these apparently heterogeneous disorders. (2) the diagnostic tools (biomarkers) and protocols through the study of a unique and well-characterized cohort of children to provide standardized diagnosis for patient stratification and research across Europe. (3) treatment of EDD using randomized, multidisciplinary clinical protocols and testing preclinical strategies in experimental models to also address novel preventative strategies. The workplan spans from clinical observation, to whole exome studies, cellular and animal models and basic research, identification of biomarkers and improvement of diagnostic methods, and back to the clinical trials and assessment of innovative, targeted treatment strategies. The consortium partners have an outstanding track record in genetics, basic neurophysiology, neuropathology and clinical research. Specialized expertise will be made available by the SMEs involved to develop novel diagnostic tools for tailored treatment approaches.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC1-PM-04-2016 | Award Amount: 9.71M | Year: 2017

The projects overall aim is to improve the health, development and quality of life of children and adults born very preterm (VPT, < 32 weeks of gestation) or very low birth weight (VLBW, < 1500g) approximately 50 000 births each year in Europe by establishing an ICT platform to integrate, harmonise and exploit the wealth of data from 20 European cohorts of VPT/VLBW children and adults and their families constituted from the early 1980s to the present, together with data from national registries. VPT/VLBW births have higher risks of cerebral palsy, visual and auditory deficits, impaired cognitive ability, psychiatric disorders and social problems than infants born at term and account for more than a third of the health and educational budgets for children. They may also face higher risks of non-communicable disease as they age. There is emerging evidence of reduced mental health, quality of life, partnering, family life and employment chances and wealth in adulthood. The platform will enable stratified sub-group analyses of sociodemographic and clinical characteristics, neonatal complications, and otherwise rare medical conditions that cannot be studied in national population cohorts. The broad temporal, geographic, cultural and health system diversity makes it possible to study the impact of socioeconomic and organisational contexts and determine the generalisability of outcomes for VPT/VLBW populations. The RECAP platform creates a value chain to promote research and innovation using population cohorts, beginning with the integration of VPT/VLBW cohorts to the translation and dissemination of new knowledge. It will be based on a sustainable governance framework, state-of-the art data management and sharing technologies, tools to strengthen research capacity, a hypothesis-driven research agenda and broad stakeholder participation, including researchers, clinicians, educators, policy makers and very preterm children and adults and their families.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ICT-2011.5.2 | Award Amount: 16.43M | Year: 2013

MD-Paedigree is a clinically-led VPH project that addresses both the first and the second actions of part B of Objective ICT-2011.5.2:\n1. it enhances existing disease models stemming from former EC-funded research (Health-e-Child and Sim-e-Child) and from industry and academia, by developing robust and reusable multi-scale models for more predictive, individualised, effective and safer healthcare in several disease areas;\n2. it builds on the eHealth platform already developed for Health-e-Child and Sim-e-Child to establish a worldwide advanced paediatric digital repository.\nIntegrating the point of care through state-of-the-art and fast response interfaces, MD-Paedigree services a broad range of off-the-shelf models and simulations to support physicians and clinical researchers in their daily work. MD-Paedigree vertically integrates data, information and knowledge of incoming patients, in participating hospitals from across Europe and the USA, and provides innovative tools to define new workflows of models towards personalised predictive medicine. Conceived of as a part of the VPH Infostructure described in the ARGOS, MD-Paedigree encompasses a set of services for storage, sharing, similarity search, outcome analysis, risk stratification, and personalised decision support in paediatrics within its innovative model-driven data and workflow-based digital repository. As a specific implementation of the VPH-Share project, MD-Paedigree fully interoperates with it. It has the ambition to be the dominant tool within its purview. MD-Paedigree integrates methodological approaches from the targeted specialties and consequently analyzes biomedical data derived from a multiplicity of heterogeneous sources (from clinical, genetic and metagenomic analysis, to MRI and US image analytics, to haemodynamics, to real-time processing of musculoskeletal parameters and fibres biomechanical data, and others), as well as specialised biomechanical and imaging VPH simulation models.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-18-2016 | Award Amount: 3.94M | Year: 2016

Issues of data subjects privacy and data security represent a crucial challenge in the biomedical sector more than in other industries. The current IT landscape in this field shows a myriad of isolated, locally hosted patient data repositories, managed by clinical centres and other organisations, which are subject to frequent and massive data breaches. Patients are disenfranchised in this process, and are not able to have a clear understanding of who uses their personal information and for what purposes. This makes it the ideal field to build and test new models of privacy and data protection, and the technologies that encode them. MyHealthMyData (MHMD) aims at changing the existing scenario by introducing a distributed, peer-to-peer architecture, based on Blockchain and Personal Data Accounts. This approach will determine new mechanisms of trust and of direct, value-based relationships between people, hospitals, research centres and businesses, in what will be the first open biomedical information network centred on the connection between organisations and the individual. The system will develop a comprehensive methodology to guide the implementation of data and identity protection systems, specifically defining approaches and tools to profile and classify sensitive data based on their informational and economic value, to assess the most suitable and robust de-identification and encryption technologies needed to secure different types of information, to allow advanced analytics, and to evaluate the overall reliability of a generic multi modular architecture. MHMD will also analyse users behavioural patterns alongside ethical and cultural orientations, to identify hidden dynamics in the interactions between humans and complex information services, to improve the design of data-driven platforms and to foster the development of a true information marketplace, in which individuals will be able to exercise full control on their personal data and leverage their value.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.4.2-1 | Award Amount: 7.88M | Year: 2014

Vancomycin is the critically important antibiotic to treat neonatal Late Onset Sepsis (LOS) due to Gram positive bacteria in neonates, including Coagulase Negative Staphylococci (CoNS) and Staphylococcus aureus. These organisms also create biofilms which are extremely resistant to antibiotics. The increased incidence of LOS due to bacteria such as CoNS and MRSA in NICUs has led to a marked increased use of vancomycin, which is now the third commonest antibiotic used in European NICUs. However, a standardised dosing regimen for premature infants has not yet been defined and there is no data about the serum concentrations needed to ensure bacterial kill for CoNS in humans. In view of the lack of any firm dosage for neonates and infants, vancomycin has been included in the EMA list of off-patent drugs addressing unmet therapeutic needs in children. Accordingly NeoVanc consortium has already submitted a Paediatric Investigation Plan (PIP) which has provisionally received a favourable 120 day opinion and this application is built on what is included in the approved PIP. This project aims to:-develop a new age-appropriate formulation of vancomycin; define the circulating concentration of vancomycin that is needed to kill CoNS in in vitro biofilm and animal model, and use that data to derive the concentration and best PD target that will be maximally effective in neonates; define the neonatal dosage that is needed to attain the concentration that can kill CoNS and enterococci by conducting a systematic meta-analysis of all available PK data and develop an optimal dosing and therapeutic drug monitoring regimen. NeoVanc will then conduct a Phase 2 b randomised clinical trial to compare the proportion of neonates reaching the PD target derived from the pre-clinical studies when treated with the current standard vs new optimised treatment regimens and to obtain data on dosing, efficacy and short and long-term safety to be included in the SPCs leading to a PUMA.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: PHC-15-2014 | Award Amount: 6.33M | Year: 2015

Stem cell regenerative therapies hold great promise for patients suffering from a variety of disorders that are associated with tissue or organ injury. Regeneration relies on tissue or organ-specific stem and progenitor cells, but can also aim at promoting the endogenous repair capacity of the body. Mesenchymal stromal cells (MSC) are undergoing clinical testing in a variety of clinical conditions aiming at repair through direct or indirect mechanisms. Their ability to form bone or cartilage is used to directly repair these tissues. In other conditions their regenerative effects are based on endogenous repair through their anti-inflammatory properties. The latter mechanism is important in the treatment of acute Graft-versus-Host Disease (GvHD). We have been involved in the clinical development from the beginning and we have shown the therapeutic potential. However, no results of controlled randomized phase 3 studies have been published to date, thereby hampering safety and efficacy assessment. Within our consortium we have developed an academic infrastructure for the harmonized production of MSC. In the RETHRIM proposal this will be combined with our clinical expertise to conduct the first Europe-wide placebo controlled randomized phase III trial using MSC regenerative therapy for the treatment of steroid-resistant visceral GvHD. Central to the RETHRIM project is the clinical trial for which 150 patients will be recruited. All MSC products will be extensively analysed using molecular and functional markers, in order to develop a potency signature for the product and for the prediction of response. We also intend to collect data from additional quality of life, health technology assessment and ethical studies. We will apply for an Orphan Drug Designation in Europe and this may serve as a stepping-stone for the further commercialization of the MSC product, once a positive outcome has been obtained.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: DS-01-2014 | Award Amount: 3.16M | Year: 2015

Public Administration (PA) authorities are working towards upgrading the level of their online services through new governance models such as the Open Government. This pushes for greater transparency, accountability and innovation aiming at increasing citizen levels of confidence and trust in PA online services. In this context, user data privacy is an important issue. VisiOn will deliver a high Technology Readiness Level (TRL) Visual Privacy Management Platform, which empowers any citizen to achieve desired levels of privacy by creating and monitoring a personal Privacy Level Agreement. The platform will provide clear visualisation of privacy preferences, relevant threats and trust issues along with an insight into the economic value of user data. The platform will equip PAs with the right tools to improve the transparency and accountability of their operations, by supporting visual analysis of (i) privacy issues at different levels (e.g. design, run-time) and perspectives (i.e. citizen, PA); (ii) regulation compliance; and (iii) business/operational processes. The VisiOn consortium will leverage existing software, tools and methodologies, which partners have developed in previous projects, towards the implementation of the privacy platform software components. The latter will be tested in an operational environment (i.e. TRL 7), in three different pilot scenarios across two different scenario types (i.e. citizen/PA & PA/cross-border PA). Pilots will involve users from three European countries. Driven by the lack of appropriate products in the market, as identified by the relevant market analysis, the VisiOn exploitation strategy is based on commercialisation of the project results at three levels: platform-as-a-whole, fragments of the platform, and partner individual exploitation. This strategy will enable partners to integrate the project results into their existing commercial offerings, thus exploring and establishing new business opportunities and ventures.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC1-PM-09-2016 | Award Amount: 5.90M | Year: 2017

Cancer is rapidly becoming the most frequent cause of death in EU. Though enormously expensive (several billions EUR/year), currently available anti-cancer therapies are major causes of chronic diseases. Adoptive immunotherapy with T cells genetically modified with a tumour-reactive chimeric antigen receptor (CAR) is an innovative therapeutic concept, promising to eradicate cancer without causing secondary chronic diseases. This approach is already at an advanced stage of development in the US, but struggles in the EU, due to a number of constrains that will be specifically tackled by this Project. The ultimate goal of EURE-CART is to bring EU at the forefront CAR T-cell immunotherapy. In this Project, we will extend the applicability of CAR T-cell immunotherapy to incurable tumours that have never been tackled with this approach. The EURE-CART Consortium is composed of 6 academic centres, 2 SMEs and 1 large enterprise from 6 EU countries, clearly representing excellences in their respective fields. EURE-CART will bring together clinical experts in oncology, and pioneers and leaders in the field of cell and gene therapy for conducting a first-in-man Phase I/II clinical trial. To be successful, EURE-CART proposes the early involvement of National regulatory authorities for accelerating the approval of CAR T-cell immunotherapy, as well as the centralisation of its production by the Molmed Spa. Molmed Spa is uniquely endowed in the EU with the know-how and experience necessary to meet this ambitious objective, as demonstrated by its unparalleled track record. The main expected impact of EURE-CART is the establishment of CAR T-cell therapy as the ultimate personalised therapy, capable of defeating chronic diseases, and to create secure new jobs in the EU through the instalment of an unprecedented alliance between academia, industry and regulatory bodies.

Loading Ospedale Pediatrico Bambino Gesu collaborators
Loading Ospedale Pediatrico Bambino Gesu collaborators