Time filter

Source Type

Osaka, Japan

Osaka Prefecture University , also abbreviated to Fudai , is one of the largest public universities in Japan. The main campus is among big Kofun tombs in Sakai, Osaka. Wikipedia.

Gold nanoparticles (Au NPs) are a potential x-ray computed tomography (CT) contrast agent. A biocompatible and bioinactive surface is necessary for application of gold nanoparticle to CT imaging. Polyethylene glycol (PEG)-attached dendrimers have been used as a drug carrier with long blood circulation. In this study, the Au NPs were grown in the PEGylated dendrimer to produce a CT contrast agent. The Au NPs were grown by adding gold ions and ascorbic acid at various equivalents to the Au NP-encapsulated dendrimer solution. Both size and surface plasmon absorption of the grown Au NPs increased with adding a large number of gold ions. The x-ray attenuation of the Au NPs also increased after the seeded growth. The Au NPs grown in the PEG-attached dendrimer at the maximum under our conditions exhibited a similar CT value to a commercial iodine agent, iopamidol, in vitro. The Au NP-loaded PEGylated dendrimer and iopamidol were injected into mice and CT images were obtained at different times. The Au NP-loaded PEGylated dendrimer achieved a blood pool imaging, which was greater than a commercial iodine agent. Even though iopamidol was excreted rapidly, the PEGylated dendrimer loading the grown Au NP was accumulated in the liver. Source

Minami T.,Osaka Prefecture University
Journal of Sol-Gel Science and Technology | Year: 2013

One of the features of the sol-gel techniques is closeness to the industrial applications. Another feature is the variation of shapes of obtained materials like bulk, fiber, coating film, powder and so on. Among them, the author has focused on research of the sol-gel coatings on various substrates for practical applications as well as the fundamental research under the collaboration with industry. In this review, results of such research will be presented. These include (a) protective coating on metal sheets, (b) micropatterning on glass substrates, (c) water-repellant coating on windshields, (d) colored coating on glass bottles for easy recycling, (e) superhydrophobic and superhydrophilic coating on glass plates, and (f) anti-reflective coating on glass lenses for cameras. Some were highly successful, and some were not, of course. The author also contributed to the foundation of The Japanese Sol-Gel Society in 2003. The activities of The Society in these 8 years are introduced. © 2011 Springer Science+Business Media, LLC. Source

Iwata Y.,King Abdullah University of Science and Technology | Koizumi N.,Osaka Prefecture University
Trends in Plant Science | Year: 2012

The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response. © 2012 Elsevier Ltd. Source

Satoh T.,Osaka Prefecture University
Small GTPases | Year: 2014

Insulin is secreted into blood vessels from β cells of pancreatic islets in response to high blood glucose levels. Insulin stimulates an array of physiological responses in target tissues, including liver, skeletal muscle, and adipose tissue, thereby reducing the blood glucose level. Insulin-dependent glucose uptake in skeletal muscle and adipose tissue is primarily mediated by the redistribution of the glucose transporter type 4 from intracellular storage sites to the plasma membrane. Evidence for the participation of the Rho family GTPase Rac1 in glucose uptake signaling in skeletal muscle has emerged from studies using cell cultures and genetically engineered mice. Herein, recent progress in understanding the function and regulation of Rac1, especially the cross-talk with the protein kinase Akt2, is highlighted. In addition, the role for another Rho family member TC10 and its regulatory mechanism in adipocyte insulin signaling are described. © 2014 Landes Bioscience. Source

Hiejima T.,Osaka Prefecture University
Physics of Fluids | Year: 2013

In this study, the spatial growth rates of supersonic streamwise vortices were investigated by inviscid linear stability analysis. The freestream Mach numbers were 2.5, 5.0, and 7.5. In previous measurements taken to define the streamwise vortices, the stagnation temperature profile of supersonic flows is approximately uniform. This study found that the growth rate of vortices at the uniform stagnation temperature is smaller than that of isentropic vortices. The instability properties of the streamwise vortices can be explained by the ratio of the circulation to the axial velocity deficit, and also by the Mach number. Moreover, it is found that the compressibility effect, by which the instability reduces as the Mach number increases, is caused by the negative energy arising from the entropy gradient of supersonic vortices that accompanies the axial velocity deficit-like wake. From an energy perspective, the effect may reasonably be correlated with the large density perturbations in supersonic flows. This study also proposes a general convective Mach number for supersonic streamwise vortices. The normalized growth rates are shown to be a function of convective Mach number within the investigated range of ratio parameters. © 2013 AIP Publishing LLC. Source

Discover hidden collaborations