Ithaca, NY, United States
Ithaca, NY, United States

Time filter

Source Type

Patent
Orthogonal, Inc | Date: 2016-10-18

A method of patterning a device comprises providing on a device substrate a layer of a fluorinated photopolymer comprising at least three distinct repeating units including a first repeating unit having a fluorine-containing group, a second repeating unit having an acid- or alcohol-forming precursor group, and a third repeating unit having a sensitizing dye. The photopolymer has a total fluorine content in a range of 15 to 60% by weight. The photopolymer layer is exposed to patterned light and contacted with a developing agent to remove a portion of exposed photopolymer layer in accordance with the patterned light, thereby forming a developed structure having a first pattern of photopolymer covering the substrate and a complementary second pattern of uncovered substrate corresponding to the removed portion of photopolymer. The developing agent comprises at least 50% by volume of a fluorinated solvent.


Patent
Orthogonal, Inc | Date: 2014-05-30

A method of patterning a device comprises providing on a device substrate a layer of a fluorinated photopolymer comprising at least three distinct repeating units including a first repeating unit having a fluorine-containing group, a second repeating unit having an acid- or alcohol-forming precursor group, and a third repeating unit having a sensitizing dye. The photopolymer has a total fluorine content in a range of 15 to 60% by weight. The photopolymer layer is exposed to patterned light and contacted with a developing agent to remove a portion of exposed photopolymer layer in accordance with the patterned light, thereby forming a developed structure having a first pattern of photopolymer covering the substrate and a complementary second pattern of uncovered substrate corresponding to the removed portion of photopolymer. The developing agent comprises at least 50% by volume of a fluorinated solvent.


Patent
Orthogonal, Inc | Date: 2014-05-30

A method of patterning a device comprises providing on a device substrate a layer of a fluorinated photopolymer comprising at least three distinct repeating units including a first repeating unit having a fluorine-containing group, a second repeating unit having an acid- or alcohol-forming precursor group, and a third repeating unit having an anthracene-based sensitizing dye. The photopolymer has a total fluorine content in a range of 15 to 60% by weight. The photopolymer layer is exposed to patterned light and contacted with a developing agent to remove a portion of exposed photopolymer layer in accordance with the patterned light, thereby forming a developed structure having a first pattern of photopolymer covering the substrate and a complementary second pattern of uncovered substrate corresponding to the removed portion of photopolymer. The developing agent comprises at least 50% by volume of a fluorinated solvent.


Patent
Orthogonal, Inc | Date: 2015-02-04

A photosensitive composition is disclosed including a fluorinated photo cross-linkable polymer provided in a fluorinated solvent such as a hydrofluoroether. The photo cross-linkable polymer includes a first repeating unit having a fluorine-containing group but not a cinnamate group, and a second repeating unit having a fluorine-containing cinnamate group. The polymer has a total fluorine content in a range of 30 to 60% by weight. The composition can be used to form patterned barrier or dielectric structures over substrates and devices such as organic electronic devices.


Patent
Orthogonal, Inc | Date: 2014-05-12

A photopolymer layer is formed on an organic device substrate and exposed to patterned radiation. The photopolymer layer includes a photopolymer comprising at least a first repeating unit having an acid-catalyzed, solubility-altering reactive group, wherein the total fluorine content of the photopolymer is less than 30% by weight. The pattern exposed photopolymer is contacted with a developing agent, such as a developing solution, to remove unexposed photopolymer, thereby forming a developed structure having a first pattern of exposed photopolymer covering the substrate and a complementary second pattern of uncovered substrate corresponding to the unexposed photopolymer. The developing agent comprises at least 50% by volume of a hydrofluoroether developing solvent.


Patent
Orthogonal, Inc | Date: 2015-07-24

A photopolymer layer is formed on an organic device substrate and exposed to patterned radiation. The photopolymer layer includes a photopolymer comprising at least a first repeating unit having an acid-catalyzed, solubility-altering reactive group, wherein the total fluorine content of the photopolymer is less than 30% by weight. The pattern exposed photopolymer is contacted with a developing agent, such as a developing solution, to remove unexposed photopolymer, thereby forming a developed structure having a first pattern of exposed photopolymer covering the substrate and a complementary second pattern of uncovered substrate corresponding to the unexposed photopolymer. The developing agent comprises at least 50% by volume of a hydrofluoroether developing solvent.


Patent
Orthogonal, Inc | Date: 2014-07-18

A photosensitive composition comprises a fluorinated solvent, a photo-acid generator and a copolymer. The copolymer comprises at least three distinct repeating units, including a first repeating unit having a fluorine-containing group, a second repeating unit having an acid-catalyzed cross-linkable group, and a third repeating unit having a sensitizing dye. The composition is useful in the fabrication of electronic devices, especially organic electronic and bioelectronic devices.


Patent
Orthogonal, Inc | Date: 2014-07-18

A photosensitive composition useful for fabricating organic electronic devices comprises a fluorinated solvent a fluorinated sensitizing dye and a copolymer. The copolymer comprises at least two distinct repeating units, including a first repeating unit having a fluorine-containing group and a second repeating unit having a solubility-altering reactive group. The presence of the fluorinated sensitizing dye improves photosensitivity.


Patent
Orthogonal, Inc | Date: 2015-11-17

A method of making a structure having a patterned a base layer and useful in the fabrication of optical and electronic devices including bioelectronic devices includes, in one embodiment, the steps of: a) providing a layer of a radiation-sensitive resin; b) exposing the layer of radiation-sensitive resin to patterned radiation to form a base layer precursor having a first pattern of exposed radiation-sensitive resin and a second pattern of unexposed radiation-sensitive resin; c) providing a layer of fluoropolymer in a third pattern over the base layer precursor to form a first intermediate structure; d) treating the first intermediate structure to form a second intermediate structure; and e) selectively removing either the first or second pattern of resin by contacting the second intermediate structure with a resin developing agent, thereby forming the patterned base layer. The method is capable of providing multilayer articles having almost any shape at high resolution without the need for expensive or damaging mechanical or laser cutting.


Patent
Orthogonal, Inc | Date: 2014-04-24

A fluorinated photopolymer is formed on a device substrate and exposed to patterned radiation. The photopolymer has a total fluorine content in a weight range of 15 to 60% and comprises at least three distinct repeating units, including a first repeating unit having a fluorine-containing group, a second repeating unit having an acid- or alcohol-forming precursor group, and a third repeating unit different from the first and second repeating units. The pattern-exposed photopolymer layer is contacted with a developing solution comprising at least a first fluorinated solvent that dissolves the unexposed photopolymer thereby forming a developed structure having a first pattern of photopolymer covering the substrate and a complementary second pattern of uncovered substrate. The developing solution is selected to provide a maximum photopolymer contrast in a range of 1.9 to 5.0.

Loading Orthogonal, Inc collaborators
Loading Orthogonal, Inc collaborators