Time filter

Source Type


Orthocare Innovations, Llc | Date: 2011-10-19

A method for assessing the risk of a patient to fall. The method includes attaching a pedometer on a patient, wherein the pedometer includes one or more sensors, allowing the patient to engage in activities throughout a predetermined period of time in, at least, an environment the patient occupies for a majority of the day while the pedometer senses information relating to steps taken by the patient. With one or more computers or with the pedometer, calculating at least one step variable from the acceleration information. With one or more computers or with the pedometer, comparing the at least one calculated step variable to a model step variable, and with one or more computers. Then, providing an assessment of the risk of the patient to fall. The pedometer may alert the patient when a risk of falling is detected.

Orthocare Innovations, Llc | Date: 2011-12-29

A sensor (which could be detachable) to sense a condition (including pressure from body weight or moisture from incontinence; applied by adhering to skin of a human body or by putting a diaper on the human body, for example), a signal processing circuit, a periodic or continuous transmitter, and a power supply (typically including a battery) are associated with a flexible substrate in low profile enabling disposition adjacent the human body. A transmitter antenna is on the substrate. Insulator film between battery contacts and a switch-and-transistor combination are two power-on techniques. A bedside monitor, a transceiver configured to receive signals from and transmit signals to the bedside monitor, and a computer connected with the transceiver can be included. Other features include: notification signaling; differently responsive antennas; unique identification; low battery detection; anti-collision transmission; patient protocol scheduling; local data transfer from the bedside monitor; and out-of-range transmission detection.

Battelle and Orthocare Innovations, Llc | Date: 2013-05-02

A hydraulic device includes a first plate that pivots in a first direction, a second plate that pivots in a second direction orthogonal to the first direction, a first hydraulic system comprising a first cylinder and piston, a second cylinder and piston and, channels connecting the first cylinder to the second cylinder, the first hydraulic system filled with hydraulic fluid, wherein the transfer of fluid between the first cylinder and second cylinder pivots the first plate, and a second hydraulic system comprising a third cylinder and piston, a fourth cylinder and piston and, channels connecting the third cylinder to the fourth cylinder, the second hydraulic system filled with hydraulic fluid, wherein the transfer of fluid between the third cylinder and fourth cylinder pivots the second plate.

Orthocare Innovations, Llc | Date: 2011-03-16

A computerized prosthesis alignment system includes a transducer that can measure socket reactions in the anterior/posterior plane and the right/left planes, while canceling or reducing the transverse forces on the measurements of these socket reactions. In addition, the transducer is also capable of determining the axial load or weight experienced by the prosthesis. The computerized prosthesis alignment system is in communication with a host computer. The moment data from the transducer is interpreted by the user via a computer interface. The host computer includes memory for storing one or more applications. These applications receive data from the transducer, interpret the data with discrete algebraic or fuzzy logic algorithms, and display the output numerically and graphically. Applications may also interpret the data to provide analyses to the user for aligning the prosthesis.

Orthocare Innovations, Llc | Date: 2013-04-01

A robotic prosthesis alignment device is disclosed that may automatically move the alignment of a prosthesis socket in relation to a prosthesis shank. The robotic prosthesis alignment device provides automatic translation in two axes. The robotic prosthesis alignment device includes angulation mechanics that automatically provide for plantarflexion, dorsiflexion, inversion, and eversion of the foot and shank with respect to the prosthesis socket. A surrogate device is also disclosed that can replicate the alignment achieved with the robotic prosthesis alignment device.

Discover hidden collaborations