Time filter

Source Type


Orthocare Innovations, Llc | Date: 2011-10-19

A method for assessing the risk of a patient to fall. The method includes attaching a pedometer on a patient, wherein the pedometer includes one or more sensors, allowing the patient to engage in activities throughout a predetermined period of time in, at least, an environment the patient occupies for a majority of the day while the pedometer senses information relating to steps taken by the patient. With one or more computers or with the pedometer, calculating at least one step variable from the acceleration information. With one or more computers or with the pedometer, comparing the at least one calculated step variable to a model step variable, and with one or more computers. Then, providing an assessment of the risk of the patient to fall. The pedometer may alert the patient when a risk of falling is detected.

Orthocare Innovations, Llc | Date: 2011-12-29

A sensor (which could be detachable) to sense a condition (including pressure from body weight or moisture from incontinence; applied by adhering to skin of a human body or by putting a diaper on the human body, for example), a signal processing circuit, a periodic or continuous transmitter, and a power supply (typically including a battery) are associated with a flexible substrate in low profile enabling disposition adjacent the human body. A transmitter antenna is on the substrate. Insulator film between battery contacts and a switch-and-transistor combination are two power-on techniques. A bedside monitor, a transceiver configured to receive signals from and transmit signals to the bedside monitor, and a computer connected with the transceiver can be included. Other features include: notification signaling; differently responsive antennas; unique identification; low battery detection; anti-collision transmission; patient protocol scheduling; local data transfer from the bedside monitor; and out-of-range transmission detection.

Agency: Department of Health and Human Services | Branch: | Program: SBIR | Phase: Phase II | Award Amount: 769.71K | Year: 2011

DESCRIPTION (provided by applicant): The fit of a prosthesis determines the function of the user to a great degree. In the extreme, a painful fit will result in non-use of the prosthesis. Diurnal, menstrual and other fluctuations in body weight lead to noticeable changes in comfort and function of a prosthesis. As a consequence, the relative quality of socket fit determined by socket volume is of paramount concern in the daily lives of persons with limb loss The objective of the proposed work is to build on the demonstrably successful Phase I effort to develop an Equilibrium Socket System (ESS) for Lower Limb Prostheses. The Phase I work undertaken by the Orthocare Innovations team has resulted in identification successful demonstration of an approach thatcan be developed into a clinically relevant, commercially viable system for dynamically adjusting prosthesis sockets. While both socket volume, and vacuum suspension systems have been developed previously, the approaches taken often work against each otherand sometimes against normal physiological change. The unique feature of the ESS is that combines both autonomous and user adjustable level of dynamic volume accommodation using a simple mechanism, coupled with a silent, dynamically adjusting vacuum suspension system. The system will allow both the prosthetist and the patient to control socket volume changes and suspension in a way that accommodates normal volume fluctuation. The technology will enable the patient to participate more fully by directly controlling adjustments based on what they feel. In the proposed work, we will design and build the definitive system from the lessons learned in Phase I, evaluate performance and feasibility with human subjects, review the results with the subjects and colleagues in clinical prosthetics, and transition the final design to manufacture. PUBLIC HEALTH RELEVANCE: This project will improve the fit and function of prostheses by creating a dynamically and automatically adjusting socket interface with the amputated limb. The technology will allow the prosthesis user to adjust the firmness of the fit of their prosthesis quickly, easily, and in a more precisely controlled manner than is currently possible.

Battelle and Orthocare Innovations, Llc | Date: 2013-05-02

A hydraulic device includes a first plate that pivots in a first direction, a second plate that pivots in a second direction orthogonal to the first direction, a first hydraulic system comprising a first cylinder and piston, a second cylinder and piston and, channels connecting the first cylinder to the second cylinder, the first hydraulic system filled with hydraulic fluid, wherein the transfer of fluid between the first cylinder and second cylinder pivots the first plate, and a second hydraulic system comprising a third cylinder and piston, a fourth cylinder and piston and, channels connecting the third cylinder to the fourth cylinder, the second hydraulic system filled with hydraulic fluid, wherein the transfer of fluid between the third cylinder and fourth cylinder pivots the second plate.

Orthocare Innovations, Llc | Date: 2013-04-01

A robotic prosthesis alignment device is disclosed that may automatically move the alignment of a prosthesis socket in relation to a prosthesis shank. The robotic prosthesis alignment device provides automatic translation in two axes. The robotic prosthesis alignment device includes angulation mechanics that automatically provide for plantarflexion, dorsiflexion, inversion, and eversion of the foot and shank with respect to the prosthesis socket. A surrogate device is also disclosed that can replicate the alignment achieved with the robotic prosthesis alignment device.

Discover hidden collaborations