Ormat Technologies Inc.

Reno, NV, United States

Ormat Technologies Inc.

Reno, NV, United States

Time filter

Source Type

Patent
Ormat Technologies Inc. | Date: 2016-02-10

The present invention provides a power plant whose motive fluid is geothermal fluid, comprising: a high-pressure steam turbine to which geothermal fluid is supplied to produce power; a high-pressure condenser to which the geothermal fluid exhausted from the high-pressure turbine after being expanded therein is supplied and condensed, said high-pressure condenser being configured with a port through which non-condensable gases contained in the geothermal fluid supplied to the high-pressure turbine are extractable in an extraction process and further configured to use heat being released during condensation of the high-pressure steam turbine exhaust to vaporize the steam condensate produced therein for producing low pressure steam without non-condensable gases; and a low-pressure steam turbine for producing power from said low-pressure steam without non-condensable gases supplied from said high-pressure condenser.


Patent
Ormat Technologies Inc. | Date: 2014-11-20

The present invention provides a method for operating a plurality of independent, closed cycle power plant modules each having a vaporizer comprising the steps of: serially supplying a medium or low temperature source fluid to each corresponding vaporizer of one or more first plant modules, respectively, to a secondary preheater of a first module, and to a vaporizer of a terminal module, whereby to produce heat depleted source fluid; providing a primary preheater for each vaporizer; and supplying said heat depleted source fluid to all of said primary preheaters in parallel.


Patent
Ormat Technologies Inc. | Date: 2014-12-29

The present invention provides a method for operating a plurality of independent, closed cycle power plant modules each having a vaporizer comprising the steps of serially supplying a medium or low temperature source fluid to each corresponding vaporizer of one or more first plant modules, respectively, to a secondary preheater of a first module, and to a vaporizer of a terminal module, whereby to produce heat depleted source fluid; providing a primary preheater for each vaporizer; and supplying said heat depleted source fluid to all of said primary preheaters in parallel.


Patent
Ormat Technologies Inc. | Date: 2014-03-13

The present invention provides a method for selecting the location of a stimulating well, comprising the steps of conducting a geological study of a field containing a geothermal hydrothermal resource by operating geological useful equipment, determining a maximum horizontal stress line within said field by means of a device, generating a map of existing wells including a plurality of sub-commercial wells within said field relative to said maximum horizontal stress line, measuring a distance between each of said sub-commercial wells and the maximum horizontal stress line, determining that those sub-commercial wells aligned with, or located relatively close to the maximum horizontal stress line are stimulatable, and selecting a location of a stimulating well for stimulating the stimulatable well that is separated less than an anticipated fracture propagating distance from said stimulatable well.


Patent
Ormat Technologies Inc. | Date: 2014-03-13

The present invention provides a geothermal based heat utilization system for just about preventing scaling of geothermal fluid in a heat exchanger, comprising a mixing unit upstream to a heat exchanger of said system and in which separated brine, steam condensate and non-condensable gas portions are mixed so as to just about reconstruct the geothermal fluid to just about equilibrium conditions such that dissolved solids are assured not to precipitate in the heat exchanger.


Patent
Ormat Technologies Inc. | Date: 2015-12-11

The present invention provides a method for preventing damage to a downhole pump impeller of a downhole pump such as a geothermal downhole pump, comprising the steps of setting a rotatable part of a downhole pump to a selected depth, monitoring the depth of the rotatable part, determining that the depth of the rotatable part has significantly changed, and taking a corrective action to return the depth of the rotatable part to said selected depth in order to prevent damage to an impeller that is liable to be caused by a change in depth of the rotatable part. The present invention is also directed to a downhole pump such as a geothermal downhole pump, comprising a line shaft, an impeller engaged with the line shaft for pressurizing fluid to be extracted from a well, and monitoring apparatus for monitoring the depth of a distal end of the line shaft in order to prevent damage to the impeller that is liable to be caused by a change in depth of the distal end.


A heat exchanger system for cooling liquid having a plurality of finned tube arrays and a plurality of fans for inducing air through the finned tube array comprising: at least one wind deflector installed along the long side of the finned tube arrays on at least one side of the arrays. The present invention for includes a method for minimizing the undesired effect of wind on the operation of a heat exchanger system for cooling liquid having a plurality of finned tube arrays and a plurality of fans for inducing air through the finned tube array, the method comprising the steps of: setting the angle of deflection of the wind deflectors other than the angle of deflection of the uppermost position of the wind deflectors; collecting readings of outlet temperature sensor of the heat exchanger, ambient temperature, wind sensor and inlet air pressure sensor of the heat exchanger; recording readings of outlet temperature sensor of the heat exchanger, ambient temperature, wind sensor and inlet air pressure sensor of the heat exchanger; comparing readings of outlet temperature sensor of the heat exchanger, ambient temperature, wind sensor and inlet air pressure sensor of the heat exchanger to previous readings; and carrying out a correction command if the the readings have changed.


Patent
Ormat Technologies Inc. | Date: 2014-03-12

The present invention provides a method for producing load-following power using low to medium temperature heat source fluid comprising the steps of reducing the power level produced by a Rankine cycle power plant producing load-following power operating on a low to medium temperature heat source fluid during one period of time; storing heat not used during the first period of time; and using the heat stored for producing power during a second period of time.


Patent
Ormat Technologies Inc. | Date: 2014-07-14

The present invention is directed to a system for generating power from fuel cell waste heat, comprising: at least one fuel cell module for generating power and producing waste heat; a bottoming cycle power block through which a motive fluid circulates to generate power; a waste heat heat-transfer unit for transferring heat from exhaust gases of the at least one fuel cell module to the bottoming cycle power block motive fluid thereby producing a desired combined power level from the at least one fuel cell module and the bottoming cycle power block.


Patent
Ormat Technologies Inc. | Date: 2014-12-01

The present invention provides a cooling water supply system, comprising a condenser for cooling working fluid of a facility to a predetermined temperature; a cooling tower into which is injectable heated cooling water that has exited said condenser, for reducing the temperature of said heated cooling water primarily through evaporative cooling; a basin beneath said cooling tower, for receiving a non-evaporated portion of said heated cooling water discharged from the cooling tower; and flow control equipment for varying the level of a fluid characteristic of a water body of said cooling water within the basin, wherein the body of water, after achieving a predetermined low level of water fluid characteristic by said flow control equipment, remains at a sufficiently low temperature throughout a subsequent predetermined time period to generate a desired condensate temperature by a portion thereof that is delivered to said condenser, even when mixed with the cooling tower discharge which is of a higher temperature than the temperature of the body of water.

Loading Ormat Technologies Inc. collaborators
Loading Ormat Technologies Inc. collaborators