Time filter

Source Type

Demanou M.,Center Pasteur Cameroon | Antonio-Nkondjio C.,Organisation de Coordination pour la lutte contre les Endemies en Afrique Centrale OCEAC | Ngapana E.,Comite National dEpidemiologie du Cameroun | Rousset D.,Center Pasteur Cameroon | And 3 more authors.
BMC Research Notes | Year: 2010

Background: Although arboviral infections including Chikungunya virus (CHIKV) are common in sub-Saharan Africa, data on their circulation and prevalence are poorly documented. In 2006, more than 400 cases of dengue-like fever were reported in Kumbo (Northwest Region of Cameroon). The aim of this study was to identify the aetiology of this fever and to define its extent in the area. Methods: We conducted a cross-sectional seroprevalence survey one year after clinical investigations to define the extent of the infection. An entomological survey consisted of the collection and identification of mosquito immature stages in water containers in or around human dwellings. Results: A total of 105 sera were obtained from volunteers and tested for CHIKV, O'Nyong-nyong virus (ONNV) and Dengue virus (DENV) specific IgM and IgG antibodies by enzyme-linked immunosorbent assays (ELISA). CHIKV infection was defined as the presence of IgM antibodies to CHIKV. There was serological evidence for recent Chikungunya infection, as 54 subjects (51.4%) had detectable IgM anti-CHIKV in their sera. Amongst these, 52 showed both anti-CHIKV IgM and IgG, and 2 (1.9%) had IgM anti-CHIKV in the absence of IgG. Isolated anti-CHIKV IgG positives were detected in 41 (39%) cases. No anti-ONNV and anti-DENV IgM antibodies were found amongst the sample tested. Out of 305 larvae collected in the different breeding sites, 87 developed to the adult stage; 56 (64.4%) were Aedes africanus and the remaining Culex spp. Conclusions: These findings suggest that the outbreak of febrile illness reported in three villages of Western Cameroon was due to CHIKV. The issue of a possible persistence of anti-CHIKV IgM antibodies is discussed. Ae. africanus which was found to be relatively abundant among the raffia palm bushes probably plays a role in the transmission of CHIKV along the chain of sylvatic/domestic mosquito species in this rural area. Particular attention should therefore be given to arbovirus infections in the Central African sub-region where these infections are becoming an emerging public health threat. © 2010 Demanou et al; licensee BioMed Central Ltd.

Paupy C.,Organisation de Coordination pour la lutte contre les Endemies en Afrique Centrale OCEAC | Paupy C.,Institute Of Recherche Pour Le Developpement | Ollomo B.,Center International Of Recherche Medicale Of Franceville Cirmf | Kamgang B.,Organisation de Coordination pour la lutte contre les Endemies en Afrique Centrale OCEAC | And 9 more authors.
Vector-Borne and Zoonotic Diseases | Year: 2010

Since its discovery in Nigeria in 1991, Aedes albopictus has invaded much of Central Africa, a region where Ae. aegypti also occurs. To assess the relationship between the invasion by Ae. albopictus and the recent emergence of dengue virus (DENV) and chikungunya virus (CHIKV), we undertook vector competence experiments on populations collected from Cameroon and conducted field investigations during concurrent epidemics of DENV and CHIKV in Gabon. Overall, infection and dissemination rates were not significantly different between Ae. albopictus and Ae. aegypti when exposed to titers of 10 8.1 mosquito infectious dose 50/mL and 107.5 plaque forming units/mL of DENV type 2 and CHIKV, respectively. Field investigations showed that Ae. albopictus readily bit man, was abundant, and outnumbered Ae. aegypti to a large extent in Gabon, particularly in suburban environments. Nevertheless, Ae. aegypti was predominant in the more urbanized central parts of Libreville. In this city, CHIKV and DENV were detected only in Ae. albopictus. These data strongly suggest that Ae. albopictus acted as the major vector of both viruses in Libreville in 2007, impacting on the epidemiology of DENV and CHIKV in this area. © 2010, Mary Ann Liebert, Inc.

Kleinschmidt I.,London School of Hygiene and Tropical Medicine | Kleinschmidt I.,University of Witwatersrand | Mnzava A.P.,World Health Organization | Kafy H.T.,Federal Ministry of Health | And 30 more authors.
Malaria Journal | Year: 2015

Background: Progress in reducing the malaria disease burden through the substantial scale up of insecticide-based vector control in recent years could be reversed by the widespread emergence of insecticide resistance. The impact of insecticide resistance on the protective effectiveness of insecticide-treated nets (ITN) and indoor residual spraying (IRS) is not known. A multi-country study was undertaken in Sudan, Kenya, India, Cameroon and Benin to quantify the potential loss of epidemiological effectiveness of ITNs and IRS due to decreased susceptibility of malaria vectors to insecticides. The design of the study is described in this paper. Methods: Malaria disease incidence rates by active case detection in cohorts of children, and indicators of insecticide resistance in local vectors were monitored in each of approximately 300 separate locations (clusters) with high coverage of malaria vector control over multiple malaria seasons. Phenotypic and genotypic resistance was assessed annually. In two countries, Sudan and India, clusters were randomly assigned to receive universal coverage of ITNs only, or universal coverage of ITNs combined with high coverage of IRS. Association between malaria incidence and insecticide resistance, and protective effectiveness of vector control methods and insecticide resistance were estimated, respectively. Results: Cohorts have been set up in all five countries, and phenotypic resistance data have been collected in all clusters. In Sudan, Kenya, Cameroon and Benin data collection is due to be completed in 2015. In India data collection will be completed in 2016. Discussion: The paper discusses challenges faced in the design and execution of the study, the analysis plan, the strengths and weaknesses, and the possible alternatives to the chosen study design. © 2015 Kleinschmidt et al.

Parmakelis A.,National and Kapodistrian University of Athens | Parmakelis A.,University of Crete | Parmakelis A.,Yale University | Moustaka M.,National and Kapodistrian University of Athens | And 13 more authors.
PLoS ONE | Year: 2010

Background: It has long been the goal of vector biology to generate genetic knowledge that can be used to "manipulate" natural populations of vectors to eliminate or lessen disease burden. While long in coming, progress towards reaching this goal has been made. Aiming to increase our understanding regarding the interactions between Plasmodium and the Anopheles immune genes, we investigated the patterns of genetic diversity of four anti-Plasmodium genes in the Anopheles gambiae complex of species. Methodology/Principal Findings: Within a comparative phylogenetic and population genetics framework, the evolutionary history of four innate immunity genes within the An. gambiae complex (including the two most important human malaria vectors, An. gambiae and An. arabiensis) is reconstructed. The effect of natural selection in shaping the genes' diversity is examined. Introgression and retention of ancestral polymorphisms are relatively rare at all loci. Despite the potential confounding effects of these processes, we could identify sites that exhibited dN/dS ratios greater than 1. Conclusions/Significance: In two of the studied genes, CLIPB14 and FBN8, several sites indicated evolution under positive selection, with CLIPB14 exhibiting the most consistent evidence. Considering only the sites that were consistently identified by all methods, two sites in CLIPB14 are adaptively driven. However, the analysis inferring the lineage -specific evolution of each gene was not in favor of any of the Anopheles lineages evolving under the constraints imposed by positive selection. Nevertheless, the loci and the specific amino acids that were identified as evolving under strong evolutionary pressure merit further investigation for their involvement in the Anopheles defense against microbes in general. © 2010 Parmakelis et al.

Discover hidden collaborations