Kolbe Organic Synthesis Laboratory

Rio Grande, Brazil

Kolbe Organic Synthesis Laboratory

Rio Grande, Brazil
SEARCH FILTERS
Time filter
Source Type

Santa-Helena E.,Grande Rio University | Teixeira S.,Grande Rio University | Castro M.R.D.,Grande Rio University | Cabrera D.D.C.,Kolbe Organic Synthesis Laboratory | And 5 more authors.
Biomedicine and Pharmacotherapy | Year: 2017

This work investigated the acute effects of the calcium channel blocker nifedipine and its new fatty hybrid derived from palmitic acid, 3,5-dipalmitoyl-nifedipine, compared to endocannabinoid anandamide during the process of inducing ischemia and reperfusion in cardiomyoblast H9c2 heart cells. The cardiomyoblasts were treated in 24 or 96-well plates (according to the test being performed) and maintaining the treatment until the end of hypoxia induction. The molecules were tested at concentrations of 10 and 100 μM, cells were treated 24 h after assembling the experimental plates and immediately before the I/R. Cell viability, apoptosis and necrosis, and generation of reactive oxygen species were evaluated. Nifedipine and 3,5-dipalmitoyl-nifedipine were used to assess radical scavenging potential and metal chelation. All tested molecules managed to reduce the levels of reactive oxygen species compared to the starvation + vehicle group. In in vitro assays, 3,5-dipalmitoyl-nifedipine showed more antioxidant activity than nifedipine. These results indicate the ability of this molecule to act as a powerful ROS scavenger. Cell viability was highest when cells were induced to I/R by both concentrations of anandamide and the higher concentration of DPN. These treatments also reduced cell death. Therefore, it was demonstrated that the process of hybridization of nifedipine with two palmitic acid chains assigns a greater cardioprotective effect to this molecule, thereby reducing the damage caused by hypoxia and reoxygenation in cardiomyoblast cultures. © 2017 Elsevier Masson SAS

Loading Kolbe Organic Synthesis Laboratory collaborators
Loading Kolbe Organic Synthesis Laboratory collaborators