Time filter

Source Type

Beaverton, OR, United States

Roberts Jr C.T.,Oregon Health And Science University | Roberts Jr C.T.,Oregon National Primate Research Center | Kurre P.,Oregon Health And Science University
Cancer Research | Year: 2013

Cell-cell communication, either in direct proximity or at a distance, generally occurs by receptor-ligand engagement and subsequent activation of downstream intracellular signaling cascades. This conventional, largely protein-based, model has long been considered necessary and sufficient to explain coordinate tissue and organismal function. Intriguing recent work indicates that many cells can also transfer RNA directly via cell-cell trafficking of nanometer-sized, lipid-bilayer vesicles. The distinct biogenesis pathways that give rise to the different vesicle types described to date are just beginning to be elucidated. Notwithstanding their diverse origin, all types of vesicles seem to contain a broad, cell-specific, nonrandom representation of cellular protein and RNA species. The cell-cell trafficking of coding and small noncoding RNAs in particular constitutes a new paradigm for the direct phenotypic modulation of cells in the local microenvironment and in distal organs. Here, we review the current understanding of RNA vesicle trafficking and its emerging role in cell-cell signaling. © 2013 American Association for Cancer Research. Source

Gesuete R.,Oregon Health And Science University | Kohama S.G.,Oregon National Primate Research Center | Stenzel-Poore M.P.,Oregon Health And Science University
Journal of Neuropathology and Experimental Neurology | Year: 2014

Toll-like receptors (TLRs) are master regulators of innate immunity and play an integral role in the activation of inflammatory response during infections. In addition, TLRs influence the body's response to numerous forms of injury. Recent data have shown that TLRs play a modulating role in ischemic brain damage after stroke. Interestingly, their stimulation before ischemia induces a tolerant state that is neuroprotective. This phenomenon, referred to as TLR preconditioning, is the result of the reprogramming of TLR response to ischemic injury. This review addresses the role of TLRs in brain ischemia and the activation of endogenous neuroprotective pathways in the setting of preconditioning. We highlight the protective role of interferon-related response and the potential site of action for TLR preconditioning involving the blood-brain barrier. Pharmacologic modulation of TLR activation to promote protection against stroke is a promising approach for the development of prophylactic and immediate therapies targeting ischemic brain injury. Copyright © 2014 by the American Association of Neuropathologists, Inc. Source

Varlamov O.,Oregon National Primate Research Center
Biochimica et Biophysica Acta - Molecular Basis of Disease | Year: 2016

The evolutionary transition from hunting to farming was associated with introduction of carbohydrate-rich diets. Today, the increased consumption of simple sugars and high-fat food brought about by Western-style diet and physical inactivity are leading causes of the growing obesity epidemic in the Western society. The extension of human lifespan far beyond reproductive age increased the burden of metabolic disorders associated with overnutrition and age-related hypogonadism. Sex steroids are essential regulators of both reproductive function and energy metabolism, whereas their imbalance causes infertility, obesity, glucose intolerance, dyslipidemia, and increased appetite. Clinical and translational studies suggest that dietary restriction and weight control can improve metabolic and reproductive outcomes of sex hormone-related pathologies, including testosterone deficiency in men and natural menopause and hyperandrogenemia in women. Minimizing metabolic and reproductive decline through rationally designed diet and exercise can help extend human reproductive age and promote healthy aging. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy. © 2016. Source

Coleman K.,Oregon National Primate Research Center
American Journal of Primatology | Year: 2011

Animal care for nonhuman primates (NHPs) in biomedical facilities has undergone major changes in the past few decades. Today, most primate facilities have dedicated and highly trained animal care technicians who go to great efforts to ensure the physiological and psychological well being of the primates in their charge. These caretakers work closely with the animals and, as a result, often develop strong relationships with them. Once discouraged and considered a potential threat to scientific objectivity, such positive relationships are now seen as important components to animal care. Positive interactions between caretakers and primates can benefit the primates by reducing their stress and improving their overall well being which can, in turn, help the scientific endeavor. Further, providing the best possible care is our moral responsibility. However, there can also be emotional costs associated with caring for NHPs in research facilities, particularly when animals become ill or have to be euthanized. Facilities can do much to help ease this conflict. High-quality and conscientious animal care is good for the animals, science, and public perception of research facilities. © 2010 Wiley-Liss, Inc. Source

What is the time course of production of vascular endothelial growth factor-A (VEGF-A), angiopoietin (ANGPT)-1 and ANGPT-2 by primate follicles during encapsulated three-dimensional culture, and what conditions affect their production? Primate follicles produce VEGF-A and ANGPT-2 in vitro, particularly after developing to the antral stage, with VEGF production influenced by FSH concentration and O(2) tension. Folliculogenesis, i.e. the development of primordial follicles into mature, antral follicles, requires the creation of a vascular network in the follicle wall via a process called angiogenesis. Angiogenic factors including VEGFs and ANGPTs have documented roles in angiogenesis. However, direct studies on the production and regulation of angiogenic factors by individual, growing follicles are limited. Ovaries (n = 9 pairs) were obtained from rhesus macaques during the early follicular phase of the menstrual cycle (cycle days 1-4). Secondary (125-225 μm) follicles were isolated mechanically, encapsulated into alginate (0.25% w/v) and cultured for 40 days. Individual follicles were cultured in a 5 or 20% O(2) environment in alpha minimum essential medium supplemented with recombinant human (h) FSH. Half of the follicles had recombinant hLH added to the media from Days 30 to 40. Follicle diameters were measured weekly. Follicles were categorized at Week 5 as no-grow (NG; <250 μm in diameter), slow-grow (SG; 251-499 μm) and fast-grow (FG; >500 μm). VEGF-A, ANGPT-1 and -2 concentrations in media were measured by ELISA. VEGF concentrations were low throughout the culture for NG follicles. SG and FG follicles had detectable VEGF concentrations at Week 2, which continued to rise throughout culture. VEGF concentrations were distinct (P < 0.05) among all three follicle categories during Weeks 4 and 5. VEGF concentrations were higher (P < 0.05) in SG follicles in the presence of high/mid-dose FSH at 5% O(2). In contrast, there were no dose-dependent differences in VEGF production for FG follicles based on FSH concentrations or O(2) tension. At Week 5, follicles that produced metaphase II oocytes, following exposure to an ovulatory hCG dose, secreted higher concentrations of VEGF than those containing germinal vesicle-intact oocytes. Media concentrations of ANGPT-1 were low throughout culture for all three follicle categories. ANGPT-2 concentrations were low throughout culture for NG follicles. In contrast, ANGPT-2 concentrations of SG and FG follicles continued to rise from Weeks 1 to 4. During Weeks 2-4, ANGPT-2 concentrations in FG follicles were significantly higher than those of SG and NG follicles (P < 0.05). This study reports VEGF-A, ANGPT-1 and -2 production by in vitro-developed individual primate (macaque) follicles, that is limited to the interval from the secondary to small antral stage. After VEGF and ANGPT-1 assays, the limited remaining samples did not allow assessment of the independent effects of gonadotrophin and O(2) on the ANGPT-2 production by cultured follicles. Findings await translation to human follicles. The above findings provide novel information on the process of primate follicle maturation. We hypothesize that a symbiotic relationship between elevated concentrations of ANGPT-2 and VEGF allows FG antral follicles to excel in follicle maturation, e.g. by promoting its vascularization. Elevated ANGPT-2 may also offer possible insight into future oocyte quality as early as Week 2, compared with Week 4 for VEGF and follicle size. The study was funded by the following grants: NIH U54 RR024347/HD058294/PL1-EB008542 (Oncofertility Consortium), NIH U54-HD018185 (SCCPIR), NIH ORWH/NICHD 2K12HD043488 (BIRCWH), NIH FIC TW/HD-00668, ONPRC 8P51OD011092. There are no conflicts of interest to declare. Source

Discover hidden collaborations