Entity

Time filter

Source Type

NEWARK, CA, United States

Grant
Agency: Department of Health and Human Services | Branch: | Program: STTR | Phase: Phase I | Award Amount: 215.20K | Year: 2014

Project Description The purpose of this project is to develop a new radiotherapy treatment modality that will substantially enhance the treatment of wet AMD with minimal toxicity to healthy tissue, leading to major improvement in visual acuity, decreaseduse of intravitreal injections of anti-VEGF agents, lower cost of treatment, and a substantially improved quality of life for patients. The new modality entitled Customizable Radiotherapy Enhancement (CuRE) using gold nanoparticles will enable major highly localized amplification of radiation damage to the neovascular AMD disease cells with minimal normal ocular tissue toxicity. In order to accomplish this, a potent amount of gold nanoparticles (AuNP), acting as smart bombs will be targeted specificallyto the neovascular AMD (disease) endothelial cells (ECs) as demonstrated in published simulations by Harvard Medical School project partner. Once the AuNP home on to the disease ECs, a relatively small amount of radiation will be focused on the AuNP. The


Patent
Oraya Therapeutics, Inc | Date: 2014-07-21

Radiosurgery systems are described that are configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, and in some embodiments, other disorders or tissues of a body are treated with the dose of radiation. In some embodiments, target tissues are placed in a global coordinate system based on ocular imaging. In some embodiments, a fiducial marker is used to identify the location of the target tissues.


Patent
Oraya Therapeutics, Inc | Date: 2013-12-17

A portable orthovoltage radiotherapy system is described that is configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, specifically macular degeneration. In some embodiments, the ocular structures are placed in a global coordinate system based on ocular imaging. In some embodiments, the ocular structures inside the global coordinate system lead to direction of an automated positioning system that is directed based on the ocular structures within the coordinate system.


Patent
Oraya Therapeutics, Inc | Date: 2013-05-13

A radiosurgery system is described that delivers a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, specifically macular degeneration. In some embodiments, ocular structures are placed in a global coordinate system, based on ocular imaging, which leads to direction of an automated positioning system. In some embodiments, the position of an ocular structure is tracked and related to a radiosurgery system. In some embodiments, a treatment plan is utilized for a specific disease to be treated and/or structures to be avoided. In some embodiments, a fiducial aids in positioning the system. In some embodiments, a reflection off the eye is used to aid in positioning. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.


A method, code and system for planning the treatment a lesion on or adjacent to the retina of an eye of a patient are disclosed. There is first established at least two beam paths along which x-radiation is to be directed at the retinal lesion. Based on the known spectral and intensity characteristics of the beam, a total treatment time for irradiation along each beam paths is determined. From the coordinates of the optic nerve in the aligned eye position, there is determined the extent and duration of eye movement away from the aligned patient-eye position in a direction that moves the patients optic nerve toward the irradiation beam that will be allowed during treatment, while still maintaining the radiation dose at the patient optic nerve below a predetermined dose level.

Discover hidden collaborations