Time filter

Source Type

Pohang, South Korea

Moon J.-K.,Ajou University | Han B.-K.,Optifarm Solution Inc. | Kim T.D.,Ajou University | Jo D.-H.,Ajou University
BMB Reports | Year: 2010

We report the tissue-specific distribution of chitinolytic activity in Korean ginseng root and characterize two 31-kDa chitinolytic enzymes. These two enzymes (SBF1 and SBF2) were purified 70- and 81-fold with yields of 0.75 and 1.25%, respectively, and exhibited optimal pH and temperature ranges of 5.0-5.5 and 40-50°C. With [3H]-chitin as a substrate, Km and Vmax values of SBF1 were 4.6 mM and 220 mmol/mg-protein/h, respectively, while those of SBF2 were 7.14 mM and 287 mmol/mg-protein/h. The purified enzymes showed markedly less activity with p-nitrophenyl-N-acetylglucosaminide and fluorescent 4-methylumbelliferyl glycosides of D-N-acetylglucosamine oligomers than with [3H]-chitin. End-product inhibition of both enzymes demonstrated that both are endochitinases with different N-acetylglucosaminidase activity. Furthermore, the NH2-terminal sequence of SBF1 showed a high degree of homology with other plant chitinases whereas the NH2-terminal amino acid of SBF2 was blocked.

Rengaraj D.,Seoul National University | Park T.S.,Seoul National University | Lee S.I.,Seoul National University | Lee B.R.,Seoul National University | And 3 more authors.
Biology of Reproduction | Year: 2013

Glucose phosphate isomerase (GPI) involves in the reversible isomerization of glucose-6-phosphate to fructose-6-phosphate in glucose pathways. Because glucose metabolism is crucial for the proliferation and differentiation of embryonic stem and germ cells, reducing GPI expression may affect the characteristic features of these cells. MicroRNAs (miRNAs) have been shown to regulate genes. In the present study, we investigated the regulation of chicken GPI by its predicted miRNAs. We determined the expression patterns of seven GPI 30-untranslated region (30UTR)-targeting miRNAs, including the gga-miR-302 cluster, gga-miR-106, gga-miR-17-5p, and gga-miR-20 cluster in chicken primordial germ cells (PGCs), compared with GPI mRNA. Among the miRNAs, gga-miR-302b, gga-miR-302d, and gga-miR-17-5p were expressed at lower levels than GPI mRNA. The remaining four miRNAs-gga-miR-302c, gga-miR-106, ggamiR- 20a, and gga-miR-20b-were expressed at higher levels than the expression of GPI mRNA. Next, we cotransfected four candidate miRNAs-gga-miR-302b, gga-miR-106, gga-miR-17- 5p, and gga-miR-20a-with GPI 30UTR into 293FT cells by dual fluorescence reporter assay. Overexpression of gga-miR-302b and gga-miR-17-5p miRNAs in 293FT cells significantly downregulated GPI expression, whereas the other two miRNAs had no effect. Then, knockdown and overexpression of these four candidate miRNAs were performed by RNA interference assay to regulate GPI in PGCs. In the RNA interference assay, the expression of GPI was greatly regulated by gga-miR-302b and gga-miR-17-5p. Finally, we examined the effects of GPI regulation on PGC proliferation and migration. Our results suggested that the regulation of GPI by gga-miR-302b and ggamiR- 17-5p affected PGCs proliferation. However, regulation of GPI using these two miRNAs did not affect the migration of PGCs into embryonic gonads. © 2013 by the Society for the Study of Reproduction, Inc.

Kim S.-H.,Animal and Plant Quarantine Agency | Lee J.-M.,Animal and Plant Quarantine Agency | Jung J.,Syntekabio Inc | Kim I.-J.,Animal and Plant Quarantine Agency | And 7 more authors.
Archives of Virology | Year: 2015

The number of porcine epidemic diarrhea (PED) cases has increased over the past 20 years in Korea, with a major outbreak in 2013. A total of 27 Korean strains from 1998 to 2013 were analyzed (excluding the noncoding regions) and divided into two groups for comparison of the spike (S), ORF3, envelope (E), membrane (M), and nucleocapsid (N) genes with those of reference strains, vaccine strains, and previously identified strains based on phylogenetic analysis. Analysis of the selection patterns of PEDV isolated in Korea indicated positive selection of nine nonsynonymous sites in the S and N proteins and negative selection at 97 sites for all of the proteins. Interestingly, eight nonsynonymous mutations in S showed no significant pattern change over the 15-year period, and one of eight mutation sites was found only in IC05TK, GN05DJ, and KNU0802 in the epidemic years 2005 and 2008. These eight mutations were also present during the epidemic years in China. Furthermore, of the signs of positive selection in the S protein, the conservative substitutions were more frequent than radical substitutions in PEDVs, suggesting that the evolution of Korean strains has been slow. Serological cross-reactivity was detected between three field PEDVs and two vaccine strains, with different serum neutralization titers. In conclusion, although Korean PEDVs have been evolving slowly, their diverse antigenicity and genetics imply that multilateral efforts to prevent future PED outbreaks are required. © 2015, Springer-Verlag Wien.

Jung J.G.,Optifarm Solution Inc. | Park T.S.,Optifarm Solution Inc. | Kim J.N.,Optifarm Solution Inc. | Han B.K.,Optifarm Solution Inc. | And 3 more authors.
Biology of Reproduction | Year: 2011

Chicken oviductal epithelium produces large quantities of egg white protein in daily cycles. In this study, we cultured and characterized oviductal epithelial cells (OECs) from juvenile (10-wk-old) chickens and from actively laying (30-wk-old) hens. The juvenile OECs were maintained over passage 25 and were positive for toluidine blue, lectin-ConA, HPA, UEA-1, WFA, WGA, anti-OVA, anti-ESR1, and anti-PGR, whereas the adult OECs were cultured over passage 6 and were positive for toluidine blue, periodic acid-Schiff, lectin-ConA, WFA, WGA, anti-OVA, anti-ESR1, and anti-PGR. To investigate the optimal concentration of steroid hormones for inducing egg white protein genes in vitro, we examined the effects of estrogen, diethylstilbestrol, progesterone, and corticosterone on OECs. Results showed that oviduct-specific levels of avidin, ovalbumin, ovomucin, lysozyme, ESR1, and PGR gene expression were significantly elevated in steroid hormone-treated OECs com- pared with those of untreated cells (P < 0.05). Ovalbumin protein was also secreted into culture medium from hormone- treated OECs. In addition, to examine the application of OECs for avian transgenesis, we introduced human thrombopoietin (THPO)-expressing lentiviral vector controlled by a 3.5-kb ovalbumin promoter into cultured OECs, and THPO expression was significantly induced with diethylstilbestrol or progesterone in juvenile OECs (P < 0.05) and in adult OECs (P < 0.05). In conclusion, these data demonstrate the potential of cultured OECs as a model system for providing a better understanding of the regulation of gene expression and for the production of an avian transgenic bioreactor. © 2011 by the Society for the Study of Reproduction, Inc.

Park S.H.,Optifarm Solution Inc. | Park S.H.,Seoul National University | Kim J.N.,Optifarm Solution Inc. | Park T.S.,Optifarm Solution Inc. | And 4 more authors.
Theriogenology | Year: 2010

The use of genetically modified germ cells is an ideal system to induce transgenesis in birds; the primordial germ cell (PGC) is the most promising candidate for this system. In the present study, we confirmed the practical application of this system using lentivirus-transduced chicken gonadal PGCs (gPGCs). Embryonic gonads were collected from 5.5-d old Korean Oge chickens (black feathers). The gPGC population was enriched (magnetic-activated cell sorting technique) and then they were transduced with a lentiviral vector expressing enhanced green fluorescent protein (eGFP), under the control of the Rous sarcoma virus (RSV) promoter. Subsequently, the eGFP-transduced PGCs were transplanted into blood vessels of 2.5-d-old embryonic White Leghorn (white feathers). Among 21 germline chimeric chickens, one male produced transgenic offspring (G1 generation), as demonstrated by testcross and genetic analysis. A homozygous line was produced and maintained through the G3 generation. Based on serum biochemistry, there were no significant physiological differences between G3 homozygotes and non-transgenic chickens. However, since eGFP transgene expression in G3 chickens varied among tissues, it was further characterized by Western blotting and ELISA. Furthermore, there were indications that DNA methylation may have affected tissue-specific expression of transgenes in chickens. In conclusion, the PGC-mediated approach used may be an efficient tool for avian transgenesis, and transgenic chickens could provide a useful model for investigating regulation of gene expression. © 2010 Elsevier Inc.

Discover hidden collaborations