SAINT LOUIS, MO, United States
SAINT LOUIS, MO, United States

Time filter

Source Type

Garimella S.,Georgia Institute of Technology | Determan M.D.,Georgia Institute of Technology | Meacham J.M.,Opencell Technologies, Inc. | Lee S.,University of Nevada, Reno | Ernst T.C.,Cummins Inc.
International Journal of Refrigeration | Year: 2011

A novel miniaturization technology for binary-fluid heat and mass exchange was developed and numerous components were fabricated for demonstration as different parts of an ammonia/water absorption heat pump. Short lengths of microchannel tubes are placed in an array, with several such arrays stacked vertically. The ammonia/water solution flows in falling film/droplet mode on the outside of the tubes while coupling fluid flows through the microchannels. Coupling fluid heat transfer coefficients are extremely high due to the use of microchannel tubes. Effective vapor-solution contact on the absorption side minimizes heat and mass transfer resistances. This concept addresses all the requirements for absorber design in an extremely compact geometry. The technology is suitable for almost all absorption heat pump components (absorbers, desorbers, condensers, rectifiers, and evaporators) and for a wide range of binary-fluid processes. The development of several components for absorption and desorption at different capacities using this technology is reported here. © 2011 Elsevier Ltd and IIR. All rights reserved.


Meacham J.M.,Opencell Technologies, Inc. | Durvasula K.,Opencell Technologies, Inc. | Degertekin F.L.,Georgia Institute of Technology | Fedorov A.G.,Georgia Institute of Technology
Journal of Laboratory Automation | Year: 2014

Effective intracellular delivery is a significant impediment to research and therapeutic applications at all processing scales. Physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus, and the mechanisms underlying the most common approaches (microinjection, electroporation, and sonoporation) have been extensively investigated. In this review, we discuss established approaches, as well as emerging techniques (magnetofection, optoinjection, and combined modalities). In addition to operating principles and implementation strategies, we address applicability and limitations of various in vitro, ex vivo, and in vivo platforms. Importantly, we perform critical assessments regarding (1) treatment efficacy with diverse cell types and delivered cargo molecules, (2) suitability to different processing scales (from single cell to large populations), (3) suitability for automation/integration with existing workflows, and (4) multiplexing potential and flexibility/adaptability to enable rapid changeover between treatments of varied cell types. Existing techniques typically fall short in one or more of these criteria; however, introduction of micro-/nanotechnology concepts, as well as synergistic coupling of complementary method(s), can improve performance and applicability of a particular approach, overcoming barriers to practical implementation. For this reason, we emphasize these strategies in examining recent advances in development of delivery systems. © 2013 Society for Laboratory Automation and Screening.


Meacham J.M.,Opencell Technologies, Inc. | O'Rourke A.,Opencell Technologies, Inc. | Yang Y.,Opencell Technologies, Inc. | Fedorov A.G.,Opencell Technologies, Inc. | And 2 more authors.
Journal of Manufacturing Science and Engineering, Transactions of the ASME | Year: 2010

The recent application of inkjet printing to fabrication of three-dimensional, multilayer and multimaterial parts has tested the limits of conventional printing-based additive manufacturing techniques. The novel method presented here, termed as additive manufacturing via microarray deposition (AMMD), expands the allowable range of physical properties of printed fluids to include important, high-viscosity production materials (e.g., polyurethane resins). AMMD relies on a piezoelectrically driven ultrasonic printhead that generates continuous streams of droplets from 45 ̃m orifices while operating in the 0.5-3.0 MHz frequency range. The device is composed of a bulk ceramic piezoelectric transducer for ultrasound generation, a reservoir for the material to be printed, and a silicon micromachined array of liquid horn structures, which make up the ejection nozzles. Unique to this new printing technique are the high frequency of operation, use of fluid cavity resonances to assist ejection, and acoustic wave focusing to generate the pressure gradient required to form and eject droplets. We present the initial characterization of a micromachined print-head for deposition of fluids that cannot be used with conventional printing-based rapid prototyping techniques. Glycerol-water mixtures with a range of properties (surface tensions of ̃58-73 mN/m and viscosities of 0.7-380 mN s /m2) were used as representative printing fluids for most investigations. Sustained ejection was observed in all cases. In addition, successful ejection of a urethane-based photopolymer resin (surface tension of ̃25-30 mN/m and viscosity of 900-3000 mN s /m2) was achieved in short duration bursts. Peaks in the ejection quality were found to correspond to predicted device resonances. Based on these results, we have demonstrated the printing of fluids that fall well outside of the accepted range for the previously introduced printing indicator. The micromachined ultrasonic print-head achieves sustained printing of fluids up to 380 mN s /m2, far above the typical printable range. Copyright © 2010 by ASME.


Grant
Agency: National Science Foundation | Branch: | Program: STTR | Phase: Phase I | Award Amount: 225.00K | Year: 2013

This Small Business Technology Transfer (STTR) Phase I project will prove the technical and commercial feasibility of a single-use polymer microarray for electromechanical transfection of biological cells. Alternative gene transfer solutions are needed to access the potential held in biopharmaceuticals, gene therapy, and stem cell research. Although physical methods for gene transfer (e.g., electroporation) have demonstrated improved (over conventional chemical-mediated techniques) treatment outcomes in difficult-to-transfect primary and stem cells, control and uniformity of treatment remain inadequate. Further, incremental improvements in performance of cuvette-based electroporation systems have only been realized through corresponding increases in system complexity and cost. One-by-one ejection of cells through cell-sized orifices has been found to promote cell membrane poration and DNA delivery into cells by imposing an identical and carefully controlled electromechanical environment on each individual cell. Unfortunately, a relatively high material cost and limitations on achievable treatment conditions (due to constraints on the geometry of microarrays manufactured using standard silicon micromachining techniques), inhibit practical implementation of existing silicon-based microarrays. The innovative design and optimization of the polymer microarray under this STTR Phase I project will yield a low-cost system capable of generating the mechanical stress field needed to achieve improved treatment outcomes in difficult-to-transfect cells. The broader impact/commercial potential of this project is to enable effective and economical transfection of difficult-to-transfect primary and stem cells used for a variety of research and therapeutic applications in the Life Sciences. Effective delivery of genes, drug molecules, imaging agents, peptides, antibodies, and enzymes into living cells is critical to applications ranging from the treatment of human disease through introduction of DNA to the investigation of basic cellular function through single molecule imaging; yet, intracellular delivery and transfection remain difficult tasks. While efficiencies of greater than 90% are common in basic research applications that use chemical or physical methods to transfect laboratory established and maintained ("easy") cell lines, efficiency can drop to 10% or lower for "difficult" cells. Refinements of physical methods (e.g., electroporation) have achieved incremental performance improvements; however, no system currently on the market meets all end-user requirements for efficiency, viability, functionality, and cost. The novel approach to transfection, which is the subject of this STTR Phase I project, promises to improve treatment efficacy through innovative use of multiple gene transfer techniques simultaneously, while better addressing end user needs by providing a cost-effective transfection solution for difficult cells.


Opencell Technologies, Inc. | Entity website

By unlocking a new dimension of biomechanical cell treatment, our approach enables researchers to overcome existing obstacles to development and discovery in the life sciences


Patent
Opencell Technologies, Inc. | Date: 2014-03-12

Embodiments of the present disclosure provide a multistage procedure for treatment of biological samples (e.g., living cells with membranes, and the like) with a substance (e.g., a drug, DNA, RNA, plasmids, and other biomolecules or materials) to achieve more efficacious intracellular delivery and transfection.


Grant
Agency: Department of Health and Human Services | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 158.71K | Year: 2010

DESCRIPTION (provided by applicant): High-throughput, parallel delivery and transfection of biologically relevant material into cells remains a difficult task. The proposed work addresses this issue through integration of multiple Electrosonic Actuation Microarrays (EAMs) into a single MIST (Multiple Integrated Sample Treatment) device that is optimized for parallel drug and/or gene/nucleic acid delivery and transfection into several cell samples via precise control of biophysical action (i.e., concurrent sono/mechanoporation and electroporation). The device format is compatible with existing large-scale cell-handling equipment. The EAM is a microelectromechanical systems (MEMS)-enabled device that ejects a sample containing biological cells through microscopic (of order size of a single cell) nozzles with incorporated electroporation electrodes, thereby opening pores in the cell membrane via combined mechano/electroporation for uptake of nanomaterials. The high ultrasonic frequency of operation and array format enable fast processing of large cell populations (up to millions of cells per second). A single reservoir system can accommodate a wide range of prescribed volumes, from ~100 nL to arbitrarily large sample sizes. By arraying EAM together, MIST enables parallel and uniform treatment of several different samples simultaneously. Economical fabrication enables fluid handling components of the device to be made disposable, which eliminates cross-sample contamination. MIST is suited to basic/applied research, as well as diagnostic and therapeutic uses. Design, development and evaluation of cell treatment by MIST will build on experience gained through characterization of a multimode bench-top-scale prototype, STEAM (Single-sample Treatment via Electrosonic Actuation Microarray). A growing understanding of the bioeffects induced in certain cell types during EAM treatment will facilitate the transition to a multichannel device. MIST development has the potential to greatly accelerate discovery of cancer therapies by enabling simultaneous screening of synthetic small interfering RNA (siRNA) for different effects on cell function. Demonstrating the feasibility of our approach will open opportunities for commercialization of MIST in other markets. The primary objective of this Phase I SBIR is to expand our single-sample STEAM platform into the multi-sample MIST device and to demonstrate parallel delivery and transfection of multiple biomolecules into different cell samples. To achieve this objective, (1) a MIST platform that is optimized for cell treatment will be developed, and (2) safe handling with regard to viability and proliferation, uniformity of treatment, and the transfection capabilities of MIST will be evaluated using standard cell assays, confocal fluorescence microscopy and flow cytometry. In addition, MIST treatment will be compared with conventional lipofectamine-mediated and electroporation-based transfection. PUBLIC HEALTH RELEVANCE: Development of a MIST (Multiple Integrated Sample Treatment) platform will address the current need for high-throughput, parallel delivery and transfection of biologically relevant material into cells. Further, because the device format is compatible with existing large-scale cell handling equipment (e.g., 384-well plate-based systems), it has the potential to accelerate discovery of potential cancer therapies through efficient screening of large complementary DNA (cDNA) and small interfering RNA (siRNA) libraries. Simultaneous transfection of multiple different DNA plasmids encoding fluorescent proteins using MIST, will demonstrate its feasibility in a wide range of drug discovery and gene therapy applications.


Grant
Agency: Department of Health and Human Services | Branch: | Program: SBIR | Phase: Phase II | Award Amount: 1.01M | Year: 2011

DESCRIPTION (provided by applicant): The ability to introduce drugs, genes, nucleic acids, and/or imaging agents into living cells is critical to drug design and delivery, as well as many cell biology and genetic modification protocols; however, currentlyavailable physical and reagent-based techniques are inadequate for applications requiring transfection of difficult-to-transfect cells (e.g., primary and stem cells). For this reason, transfection of nucleic acids into cells has become a significant challenge in the development of RNAi therapies and stem cell clinical applications. The technology that is the subject of this project proposal has demonstrated the potential to significantly impact these areas by enabling investigations of difficult-to-transfect cells, which are not currently feasible. The proposed work addresses this challenge through development of a microfabricated technology that enables treatment of arbitrarily sized cell populations on a cell-by-cell basis. STEAM (Single-sample Treatment via Electrosonic Actuation Microarray) ejects biological cells through microscopic nozzles with incorporated electroporation electrodes, thereby opening pores by concurrent mechanical and electrical disruption of the cell membrane. The parallel microarray format is scalable to accommodate discrete sample volumes from ~100 nl to tens of ml; however, in continuous-flow mode, the same device can rapidly process cells at 1 to 100 million cells per second. The critical advantage of STEAM is the uniformity of treatment experienced by each cell in a population, which is the key to achieving high transfection efficiency. During the SBIR Phase I project a prototype STEAM device demonstrated successful treatment of laboratory established cell lines. Device operating parameters were optimized using a small fluorescent molecule to evaluate uptake and cell viability. In addition, STEAM achieved trasfection efficiencies of 80% (mechanical poration) and gt90% (mechanical + electroporation) for GFP-encoding plasmid into HEK293 cells with cell viability gt70%, which is on par with lipofection and the best commercially available electroporation systems. The primary objectives of this SBIR Phase II project are further device refinement and optimization towards development of a production prototype and direct comparison with available physical and reagent-based techniques for transfection of difficult cells. To achieve these objectives, (1) a stand-alone STEAM system with disposable cartridge-based sample handling and on-board electronic control of both mechanical and electroporation parameters will be developed, and (2) a direct comparison of STEAM, commercial electroporation systems, lipofectamine-mediated transfection, and lentiviral gene transfer in difficult cells (including primary cancer stem cells from glioblastoma multiforme) will be performed. PUBLIC HEALTH RELEVANCE: Development of the STEAM (Single-sample Treatment via Electrosonic Actuation Microarray) platform will address the current need for alternative gene transfer solutions for use with difficult-to-transfect cells (e.g., primary and stem cells). The lack of successful commercial gene transfer solutions limits research in the life sciences and biomedical fields. STEAM addresses the need for effective, high-throughput, and scalable techniques to achieve transfection of difficult cells.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: STTR PHASE I | Award Amount: 225.00K | Year: 2013

This Small Business Technology Transfer (STTR) Phase I project will prove the technical and commercial feasibility of a single-use polymer microarray for electromechanical transfection of biological cells. Alternative gene transfer solutions are needed to access the potential held in biopharmaceuticals, gene therapy, and stem cell research. Although physical methods for gene transfer (e.g., electroporation) have demonstrated improved (over conventional chemical-mediated techniques) treatment outcomes in difficult-to-transfect primary and stem cells, control and uniformity of treatment remain inadequate. Further, incremental improvements in performance of cuvette-based electroporation systems have only been realized through corresponding increases in system complexity and cost. One-by-one ejection of cells through cell-sized orifices has been found to promote cell membrane poration and DNA delivery into cells by imposing an identical and carefully controlled electromechanical environment on each individual cell. Unfortunately, a relatively high material cost and limitations on achievable treatment conditions (due to constraints on the geometry of microarrays manufactured using standard silicon micromachining techniques), inhibit practical implementation of existing silicon-based microarrays. The innovative design and optimization of the polymer microarray under this STTR Phase I project will yield a low-cost system capable of generating the mechanical stress field needed to achieve improved treatment outcomes in difficult-to-transfect cells.

The broader impact/commercial potential of this project is to enable effective and economical transfection of difficult-to-transfect primary and stem cells used for a variety of research and therapeutic applications in the Life Sciences. Effective delivery of genes, drug molecules, imaging agents, peptides, antibodies, and enzymes into living cells is critical to applications ranging from the treatment of human disease through introduction of DNA to the investigation of basic cellular function through single molecule imaging; yet, intracellular delivery and transfection remain difficult tasks. While efficiencies of greater than 90% are common in basic research applications that use chemical or physical methods to transfect laboratory established and maintained (easy) cell lines, efficiency can drop to 10% or lower for difficult cells. Refinements of physical methods (e.g., electroporation) have achieved incremental performance improvements; however, no system currently on the market meets all end-user requirements for efficiency, viability, functionality, and cost. The novel approach to transfection, which is the subject of this STTR Phase I project, promises to improve treatment efficacy through innovative use of multiple gene transfer techniques simultaneously, while better addressing end user needs by providing a cost-effective transfection solution for difficult cells.

Loading Opencell Technologies, Inc. collaborators
Loading Opencell Technologies, Inc. collaborators