Time filter

Source Type

Patent
On chip Biotechnologies Co. | Date: 2011-12-14

The biohazard problem of a flow cytometer and a cell sorter of the related art is solved. The present invention provides an apparatus for analyzing particles in a solution including a unit configured to place a flow cell having a flow path for flowing a sample solution containing the particles; a unit configured to illuminate the sample solution flowing through the flow path of the flow cell; a photodetector that detects a scattered light and/or fluorescence generated from the particles in the sample solution; and a unit configured to analyze the particles based on their signal intensities detected by the photodetector, wherein the flow cell has the flow path formed in a substrate, a reflection plane is formed on the side surface of the flow path, the reflection plane leads the lights generated in the flow path of the flow cell and advancing in the substrate in-plane direction to a specified region of the surface of the flow cell, and the photodetector detects the light exiting from the specified region to the outside.


Patent
On Chip Biotechnologies Co. | Date: 2015-10-27

The present invention provides an apparatus for analyzing particles in a solution including a unit configured to place a flow cell having a flow path for flowing a sample solution containing the particles; a unit configured to illuminate the sample solution flowing through the flow path of the flow cell; a photodetector that detects a scattered light and/or fluorescence generated from the particles in the sample solution; and a unit configured to analyze the particles based on their signal intensities detected by the photodetector, wherein the flow cell has the flow path formed in a substrate, a reflection plane is formed on the side surface of the flow path, the reflection plane leads the lights generated in the flow path of the flow cell and advancing in the substrate in-plane direction to a specified region of the surface of the flow cell, and the photodetector detects the light exiting from the specified region to the outside.


Patent
On chip Biotechnologies Co. | Date: 2012-11-21

The object of the present invention is to provide (1) a cell sorter,(2) a flow cytometer capable of detecting sideward scattered light, (3) a method for accurately measuring cell concentration,(4) a method for multicolor staining analysis without a fluorescence correction, and the like, which satisfy requirements that carry-over and cross contamination of samples do not occur. The object can be solved by an apparatus for separating particles comprising:a flow cell wherein a flow path is formed in a flat substrate,a illumination unit configured to illuminate the particles in a sample liquid flowing through the flow path,a detection unit configured to detect particles of interest by detecting scattered light or fluorescence from the particle when the particle is illuminated, and identifying the particle based on its signal intensity,a constant-pressure pump which applies a pressure pulse to the particles in the sample liquid flowing through the flow path in the flow cell, and an electromagnetic valve connected thereto, anda control unit configured to control the movement of the electromagnetic valve based on the signal from the detection unit.


Patent
On Chip Biotechnologies Co. | Date: 2015-10-27

A method for sorting a cell particle in a solution includes steps of preparing an apparatus having a sample solution reservoir formed on a substrate, a main flow path formed in the substrate, a first branched flow path and a second branched flow path, and a downstream flow path; storing a sample solution; applying a constant gas pressure to the sample solution, illuminating the sample solution; determining calculating a delayed timing; and applying a pushing pressure.


The object of the present invention is to provide an evaluation method capable of accurately determining a metastasis of cancer, the stage of cancer progression, or the malignancy of cancer.The object can be solved by a method for detecting the degree of malignancy of each of the circulating tumor cells, characterized by the following steps:(a) bringing an epithelial cell-binding component, which specifically binds to a marker molecule expressed on epithelial cells and is fluorescently-labeled or luminescent enzyme-labeled, and a mesenchymal cell-binding component, which specifically binds to a marker molecule expressed on mesenchymal cells and is fluorescently-labeled or luminescent enzyme-labeled, into contact with a sample that possibly contains circulating tumor cells,(b) detecting a fluorescence signal or a luminescence signal of the epithelial cell-binding component and a fluorescence signal or a luminescence signal of the mesenchymal cell-binding component of each of the cells, and (c) determining the degree of epithelial-mesenchymal transition of circulating tumor cells based on the signal amount of the epithelial cell-binding component (E) and the signal amount of the mesenchymal cell-binding component (M).


Conventional CTC detection methods have been problematic in that 1) there is no technique for automatically determining and counting live CTCs in a brief period of time, 2) no process has been developed for detecting, counting, and thereafter collecting and culturing live CTCs, and 3) there exists no flow cytometer that is contamination free and is capable of measuring an entire sample. Provided is a CTC detection method which comprises a pre-treatment step for concentrating and fluorescence staining CTCs, and a step for identifying and counting CTCs. The pre-treatment step includes attaching magnetic beads to EpCAM antibodies expressed by epithelial cell-derived CTCs and concentrating the CTCs through the use of a magnet, fluorescently labeling an epithelia cell surface marker of the CTCs through the use of EpCAM antibodies or 5E11 antibodies, and performing two types of nuclear staining, one being cell membrane-permeable and the other being cell membrane-impermeable. The identifying and counting step includes evaluating the respective absolute concentrations of live and dead CTCs in a volume of blood by automatically identifying CTCs by the ratio of a plurality of fluorescence signal intensities using a flow cytometer, and differentiating between and counting the live CTCs and the dead CTCs. In the cytometer, an entire liquid-feeding system that includes a flow cell can be replaced for each sample, and the total amount of a liquid sample can be measured.


Conventional CTC detection methods have been problematic in that 1) there is no technique for automatically determining and counting live CTCs in a brief period of time, 2) no process has been developed for detecting, counting, and thereafter collecting and culturing live CTCs, and 3) there exists no flow cytometer that is contamination free and is capable of measuring an entire sample. Provided is a CTC detection method which comprises a pre-treatment step for concentrating and fluorescence staining CTCs, and a step for identifying and counting CTCs. The pre-treatment step includes attaching magnetic beads to EpCAM antibodies expressed by epithelial cell-derived CTCs and concentrating the CTCs through the use of a magnet, fluorescently labeling an epithelia cell surface marker of the CTCs through the use of EpCAM antibodies or 5E11 antibodies, and performing two types of nuclear staining, one being cell membrane-permeable and the other being cell membrane-impermeable. The identifying and counting step includes evaluating the respective absolute concentrations of live and dead CTCs in a volume of blood by automatically identifying CTCs by the ratio of a plurality of fluorescence signal intensities using a flow cytometer, and differentiating between and counting the live CTCs and the dead CTCs. In the cytometer, an entire liquid-feeding system that includes a flow cell can be replaced for each sample, and the total amount of a liquid sample can be measured.


Patent
On Chip Biotechnologies Co. | Date: 2015-01-23

The present invention provides an apparatus for analyzing particles in a solution including a unit configured to place a flow cell having a flow path for flowing a sample solution containing the particles; a unit configured to illuminate the sample solution flowing through the flow path of the flow cell; a photodetector that detects a scattered light and/or fluorescence generated from the particles in the sample solution; and a unit configured to analyze the particles based on their signal intensities detected by the photodetector, wherein the flow cell has the flow path formed in a substrate, a reflection plane is formed on the side surface of the flow path, the reflection plane leads the lights generated in the flow path of the flow cell and advancing in the substrate in-plane direction to a specified region of the surface of the flow cell, and the photodetector detects the light exiting from the specified region to the outside.


Patent
Shizuoka Prefecture and On Chip Biotechnologies Co. | Date: 2013-03-28

The object of the present invention is to provide an evaluation method capable of accurately determining a metastasis of cancer, the stage of cancer progression, or the malignancy of cancer. The object can be solved by a method for detecting the degree of malignancy of each of the circulating tumor cells, characterized by the following steps: (a) bringing an epithelial cell-binding component, which specifically binds to a marker molecule expressed on epithelial cells and is fluorescently-labeled or luminescent enzyme-labeled, and a mesenchymal cell-binding component, which specifically binds to a marker molecule expressed on mesenchymal cells and is fluorescently-labeled or luminescent enzyme-labeled, into contact with a sample that possibly contains circulating tumor cells, (b) detecting a fluorescence signal or a luminescence signal of the epithelial cell-binding component and a fluorescence signal or a luminescence signal of the mesenchymal cell-binding component of each of the cells, and (c) determining the degree of epithelial-mesenchymal transition of circulating tumor cells based on the signal amount of the epithelial cell-binding component (E) and the signal amount of the mesenchymal cell-binding component (M).


Patent
On Chip Biotechnologies Co. | Date: 2011-01-11

The object of the present invention is to provide (1) a cell sorter, (2) a flow cytometer capable of detecting sideward scattered light, (3) a method for accurately measuring cell concentration, (4) a method for multicolor staining analysis without a fluorescence correction, and the like, which satisfy requirements that carry-over and cross contamination of samples do not occur. The object can be solved by an apparatus for separating particles comprising:

Loading On chip Biotechnologies Co. collaborators
Loading On chip Biotechnologies Co. collaborators