East Taunton, MA, United States
East Taunton, MA, United States

Time filter

Source Type

A wearable device for use with a smart phone or tablet includes a measurement device having a plurality of LEDs generating a near-infrared input optical beam that measures physiological parameters. The measurement device includes lenses configured to receive and to deliver the input beam to skin which reflects the beam. The measurement device includes a reflective surface configured to receive and redirect the light from the skin, and a receiver configured to receive the reflected beam. The light source is configured to increase a signal-to-noise ratio of the input beam reflected from the skin by increasing the light intensity from the LEDs and modulation of the LEDs. The measurement device is configured to generate an output signal representing a non-invasive measurement on blood contained within the skin. The wearable device is configured to wirelessly communicate with the smart phone or tablet which receives and processes the output signal.


A measurement system includes semiconductor light sources generating an input beam, optical amplifiers receiving the input beam and delivering an intermediate beam, and fused silica fibers with core diameters less than 400 microns receiving and delivering the intermediate beam to the fibers forming a first optical beam. A nonlinear element receives the first optical beam and broadens the spectrum to at least 10 nm through a nonlinear effect to form the output optical beam which includes a near-infrared wavelength of 700-2500 nm. A measurement apparatus is configured to receive the output optical beam and deliver it to a sample to generate a spectroscopy output beam. A receiver receives the spectroscopy output beam having a bandwidth of at least 10 nm and processes the beam to generate an output signal, wherein the light source and the receiver are remote from the sample, and wherein the sample comprises plastics or food industry goods.


Patent
OMNI Inc | Date: 2016-08-26

A white light spectroscopy system includes a super continuum light source having an input light source including semiconductor diodes to generate an input beam having a wavelength shorter than 2.5 microns. The light source includes a cladding-pumped fiber optical amplifier to receive the input beam, and a photonic crystal fiber to receive the amplified optical beam to broaden the spectral width to 100 nm or more forming an output beam in the visible wavelength range. The output beam is pulsed with a repetition rate of 1 Megahertz or higher. The system also includes a lens and/or mirror to receive the output beam, to send the output beam to a scanning stage, and to deliver the received output beam to a sample. A detection system includes dispersive optics and narrow band filters followed by one or more detectors to permit approximately simultaneous measurement of at least two wavelengths from the sample.


A wearable device for use with a smart phone or tablet includes a measurement device having a light source with a plurality of light emitting diodes (LEDs) for measuring physiological parameters and configured to generate an optical beam with wavelengths including a near-infrared wavelength between 700 and 2500 nanometers. The measurement device includes lenses configured to deliver the optical beam to a sample of skin or tissue, which reflects the optical beam to a receiver located a first distance from one of the LEDs and a different distance from another of the LEDs, and is also configured to generate an output signal representing a non-invasive measurement on blood contained within the sample. The wearable device is configured to communicate with the smart phone or tablet, which receives, processes, stores and displays the output signal with the processed output signal configured to be transmitted over a wireless transmission link.


A measurement apparatus includes sensors adapted to be coupled to tissue containing blood and configured to generate signals associated with physiological parameters. The device is configured to communicate with a software application through a base device. The software application is configured to operate on a control system. The control system is capable of receiving physiological parameter signals. The control system includes a touch-screen, a proximity sensor, circuitry for obtaining movement information from a positioning sensor, a mechanical system having actuators, and a wireless transmitter to transmit data to a host. The software application is operable to generate the physiological information based on the signals from the sensors. The control system is further configured to receive voice input signals and manually entered input signals. The host is configured to generate status information from the data and includes a memory storage device and a communication device.


A measurement system includes a light source generating an output optical beam using semiconductor sources generating an input beam, optical amplifiers outputting an intermediate beam, and optical fibers receiving the intermediate beam and forming a first optical beam. A nonlinear element broadens the output beam spectrum to at least 10 nm, the spectrum comprising a near-infrared wavelength of 700-2500 nm. A measurement apparatus receives the output optical beam and delivers to a sample an analysis output beam. A receiver receives and processes the analysis output beam reflected or transmitted from the sample.


Grant
Agency: National Aeronautics and Space Administration | Branch: | Program: SBIR | Phase: Phase II | Award Amount: 749.81K | Year: 2016

There is no acceptable urine or fecal containment waste management system for long duration missions for use by crew members confined to pressurized space suits available. Omni's proposed solution is to integrate its new patent pending urine collection and containment system technology, ProRen FLO (Prosthetic Renal Flow System), combined with Omni fecal collection and containment options into a In-Suit waste management System Garment.


A processing plate assembly for mounting to a homogenizer and for holding tubes containing samples to be homogenized. The processing plate assembly includes a mounting structure and one or plural tube holders. The mounting structure removably or permanently mounts to the homogenizer and can be provided by for example a flat plate-like mounting structure. The tube holders are attached to the mounting structure and hold the tubes in generally tangential use positions with a centroid of each tube positioned along a longitudinal axis of the tube and axially offset from a radius line of the processing plate that is perpendicular to the tube axis. In this way, the homogenizer imparts sinusoidal swashing forces on the tubes that urge the tubes forward into securement in their tube holders and that produces improved homogenization in the tubes.


Switched capacitor circuits and charge transfer methods comprising a sampling phase and a transfer phase. Circuits and methods are implemented via a plurality of switches, a set of at least two capacitors, at least one voltage amplifier, and an operational amplifier. In one example, during the sampling phase at least one input voltage is sampled, and during the transfer phase at least a first reference voltage provided by the at least one voltage amplifier is subtracted from the at least one input voltage using the operational amplifier. The same set of at least two capacitors may be used in both the sampling phase and the transfer phase.


Agitation mechanisms for homogenization devices for processing sample materials in tubes that are secured by tube holders to the agitation mechanisms. Each agitation mechanism includes a first rotary member having a first fixed rotational axis, a second rotary member having a second fixed rotational axis, and a connecting member that extends between them, is rotationally mounted to them at third and fourth non-fixed rotational axes, and to which the tube holder is mounted, with the first and third rotational axes defining a first offset, and with the second and fourth rotational axes defining a second offset. When the first rotary member is driven through rotation, the sample in the tube in the tube holder on the connecting member is driven through a nonlinearly reciprocating motion profile to produce a grinding shear action to better homogenize the samples. Other disclosed embodiments produce linearly reciprocating motion profiles.

Loading OMNI Inc collaborators
Loading OMNI Inc collaborators