Entity

Time filter

Source Type

Snyder, OK, United States

The Oklahoma Medical Research Foundation , located in Oklahoma City, Oklahoma, is an independent, nonprofit biomedical research institute. Established in 1946, OMRF is dedicated to understanding and developing more effective treatments for human disease. Stephen M. Prescott, M.D., serves as president of OMRF, which employs more than 500 scientific and administrative staff members.OMRF’s scientists, who include a member of the National Academy of Sciences and a Howard Hughes Medical Institute investigator, hold more than 500 U.S. and international patents and have spun off 11 biotech companies. Discoveries at OMRF led to Xigris, the first FDA-approved drug for the treatment of severe sepsis, and Ceprotin, a therapy for people suffering from a rare and life-threatening blood disorder known as protein C deficiency. Research at OMRF also identified the enzyme believed responsible for Alzheimer’s disease and laid the groundwork for OncoVue, a breast cancer risk assessment test. Wikipedia.


Olson L.,Mount Sinai School of Medicine | Olson L.,Oklahoma Medical Research Foundation | Soriano P.,Mount Sinai School of Medicine
Developmental Cell | Year: 2011

Mural cells (pericytes and vascular smooth muscle cells) provide trophic and structural support to blood vessels. Vascular smooth muscle cells alternate between a synthetic/proliferative state and a differentiated/contractile state, but the dynamic states of pericytes are poorly understood. To explore the cues that regulate mural cell differentiation and homeostasis, we have generated conditional knockin mice with activating mutations at the PDGFRβ locus. We show that increased PDGFRβ signaling drives cell proliferation and downregulates differentiation genes in aortic vascular smooth muscle. Increased PDGFRβ signaling also induces a battery of immune response genes in pericytes and mesenchymal cells and inhibits differentiation of white adipocytes. Mural cells are emerging as multipotent progenitors of pathophysiological importance, and we identify PDGFRβ signaling as an important in vivo regulator of their progenitor potential. © 2011 Elsevier Inc.


Liu H.,University of Texas Southwestern Medical Center | Rankin S.,Oklahoma Medical Research Foundation | Yu H.,University of Texas Southwestern Medical Center
Nature Cell Biology | Year: 2013

Timely dissolution of sister-chromatid cohesion in mitosis ensures accurate chromosome segregation to guard against aneuploidy and tumorigenesis. The complex of shugoshin and protein phosphatase 2A (SGO1-PP2A) protects cohesin at centromeres from premature removal by mitotic kinases and WAPL in prophase. Here we address the regulation and mechanism of human SGO1 in centromeric cohesion protection, and show that cyclin-dependent kinase (CDK)-mediated, mitosis-specific phosphorylation of SGO1 activates its cohesion-protection function and enables its direct binding to cohesin. The phospho-SGO1-bound cohesin complex contains PP2A, PDS5 and hypophosphorylated sororin, but lacks WAPL. Expression of non-phosphorylatable sororin bypasses the requirement for SGO1-PP2A in centromeric cohesion. Thus, mitotic phosphorylation of SGO1 targets SGO1-PP2A to cohesin, promotes dephosphorylation of PDS5-bound sororin and protects centromeric cohesin from WAPL. PP2A-orchestrated, site-selective dephosphorylation of cohesin and its regulators underlies centromeric cohesion protection. © 2013 Macmillan Publishers Limited. All rights reserved.


This article is part of a Special Issue "Neuroendocrine-Immune Axis in Health and Disease.". Immune cells and hematopoietic progenitors express estrogen receptors (ER). As ligand-activated transcription factors that modulate chromatin structure, ER regulate transcriptional programs that direct the development or functional responses of immune cells. ER-regulated immune responses likely contribute to significant sex biases in infection, autoimmunity and other inflammatory diseases, and changes in immune function during the female hormonal cycle and pregnancy. Here we summarize our own and others' studies showing that ERα signaling regulates the development of dendritic cells (DCs), antigen-presenting cells crucial for initiation of innate and adaptive immunity. During inflammation, elevated GM-CSF directs the development of new DCs from monocytes or other precursors that infiltrate tissues and lymphoid organs, and these de novo populations of inflammatory DCs have critical roles in programming T cell-mediated responses during infection and autoimmunity. Estradiol acting via ERα, but not ERβ, promotes the GM-CSF-mediated inflammatory pathway of DC differentiation, leading to the development of DCs with increased functional capacity. Estradiol/ERα signaling acts directly in GM-CSF-stimulated myeloid progenitors to induce elevated levels of IRF4, a transcription factor that directs a developmental program underlying CD11b+ DC differentiation. In contrast, during homeostatic Flt3 Ligand-driven DC development, ERα signaling decreases numbers of myeloid progenitors and differentiated DCs, yet promotes more functionally competent DCs. Thus ERα signaling regulates the response of DC progenitors to the external cytokine environment, thereby altering the strength or integrity of DC developmental pathways. The development of increased numbers of DCs during inflammation will likely increase the magnitude of DC-mediated functional responses including cytokine production, processing and MHC-mediated presentation of antigens, and activation and polarization of T and B lymphocytes; these functions also may be regulated directly by ERα signaling. In sum, via profound effects on DC development and ensuing functional responses, ERα signaling can regulate the quality of the adaptive immune responses and influence the resolution of infection or chronic inflammatory diseases. © 2012 Elsevier Inc.


Neutrophils emigrate from venules to sites of infection or injury in response to chemotactic gradients. How these gradients form is not well understood. Some IL-6 family cytokines stimulate endothelial cells to express adhesion molecules and chemokines that recruit leukocytes. Receptors for these cytokines share the signaling subunit gp130. We studied knockout mice lacking gp130 in endothelial cells. Unexpectedly, gp130-deficient endothelial cells constitutively expressed more CXCL1 in vivo and in vitro, and even more upon stimulation with tumor necrosis factor-α. Mobilization of this increased CXCL1 from intracellular stores to the venular surface triggered β2 integrin-dependent arrest of neutrophils rolling on selectins but impaired intraluminal crawling and transendothelial migration. Superfusing CXCL1 over venules promoted neutrophil migration only after intravenously injecting mAb to CXCL1 to diminish its intravascular function or heparinase to release CXCL1 from endothelial proteoglycans. Remarkably, mice lacking gp130 in endothelial cells had impaired histamine-induced venular permeability, which was restored by injecting anti-P-selectin mAb to prevent neutrophil rolling and arrest. Thus, excessive CXCL1 expression in gp130-deficient endothelial cells augments neutrophil adhesion but hinders migration, most likely by disrupting chemotactic gradients. Our data define a role for endothelial cell gp130 in regulating integrin-dependent adhesion and de-adhesion of neutrophils during inflammation.


Rao L.V.M.,University of Texas Health Science Center at Tyler | Esmon C.T.,Oklahoma Medical Research Foundation | Pendurthi U.R.,University of Texas Health Science Center at Tyler
Blood | Year: 2014

Endothelial cell protein C receptor (EPCR) was first identified and isolated as a cellular receptor for protein C on endothelial cells. EPCR plays a crucial role in the protein C anticoagulant pathway by promoting protein C activation. In the last decade, EPCR has received wide attention after it was discovered to play a key role in mediating activated protein C (APC)-induced cytoprotective effects, including antiapoptotic, anti-inflammatory, and barrier stabilization. APC elicits cytoprotective signaling through activation of protease activated receptor-1 (PAR1). Understanding how EPCR-APC induces cytoprotective effects through activation of PAR1, whose activation by thrombin is known to induce a proinflammatory response, has become a major research focus in the field. Recent studies also discovered additional ligands for EPCR, which include factor VIIa, Plasmodium falciparum erythrocyte membrane protein, and a specific variant of the T-cell receptor. These observations open unsuspected new roles for EPCR in hemostasis, malaria pathogenesis, innate immunity, and cancer. Future research on these new discoveries will undoubtedly expand our understanding of the role of EPCR in normal physiology and disease, as well as provide novel insights into mechanisms for EPCR multifunctionality. Comprehensive understanding of EPCR may lead to development of novel therapeutic modalities in treating hemophilia, inflammation, cerebral malaria, and cancer. © 2014 by The American Society of Hematology.

Discover hidden collaborations