Office of Sustainable Development

Taipei, Taiwan

Office of Sustainable Development

Taipei, Taiwan
SEARCH FILTERS
Time filter
Source Type

Chen S.-C.,National Chiao Tung University | Tsai C.-J.,National Chiao Tung University | Chou C.C.-K.,Academia Sinica, Taiwan | Roam G.-D.,Office of Sustainable Development | And 2 more authors.
Atmospheric Environment | Year: 2010

Atmospheric ultrafine particles (UPs or PM0.1) were investigated at the roadside of Syuefu road in Hsinchu city, in the Syueshan highway tunnel in Taipei and in the NTU Experimental Forest in Nantou, Taiwan. A SMPS (TSI 3936) and three MOUDIs (MSP 110) were collocated to determine the number and mass concentrations of the PM0.1 simultaneously. The filter samples were further analyzed for organic carbon (OC), element carbon (EC), water-soluble ions and trace elements. Taking into account the OC artifact of PM0.1, good chemical mass closure (ratio of the reconstructed chemical mass to the gravimetrical mass of PMs) was obtained with an unknown percentage of 10.6, 26.2 and 37.2% at the roadside, tunnel and forest, respectively. The unexplained mass was attributed to aerosol water in this study. The artifact at the roadside, tunnel and the forest PM0.1 mass was found to be as high as 51.6 ± 10.7%, 20.0 ± 5.4% and 85.6 ± 18.4%, respectively. Finally, the effective density of the roadside, tunnel and forest PM0.1 was calculated based on the results of chemical speciation and found to be 1.45, 1.29 and 1.22 g cm-3, respectively, which was in good agreement with that obtained by using the method of Spencer et al. (2007). Based on these results, it is foreseeable that the number concentration of the SMPS can be converted using the effective density determined by Spencer et al. (2007) for the real time measurement of the PM0.1 concentration. © 2009 Elsevier Ltd. All rights reserved.


Zhu C.-S.,National Chiao Tung University | Zhu C.-S.,CAS Institute of Earth Environment | Chen C.-C.,National Chiao Tung University | Cao J.-J.,CAS Institute of Earth Environment | And 5 more authors.
Atmospheric Environment | Year: 2010

Fine particles (PM2.5) and nanoparticles (PM0.1) were sampled using Dichotomous sampler and MOUDI, respectively, in Xueshan Tunnel, Taiwan. Eight carbon fractions were analyzed using IMPROVE thermal-optical reflectance (TOR) method. The concentrations of different temperature carbon fractions (OC1-OC4, EC1-EC3) in both PM2.5 and PM0.1 were measured and the correlations between OC and EC were discussed. Results showed that the ratios of OC/EC were 1.26 and 0.67 for PM2.5 and PM0.1, respectively. The concentration of EC1 was found to be more abundant than other elemental carbon fractions in PM2.5, while the most abundant EC fraction in PM0.1 was found to be EC2. The variation of contributions for elemental carbon fractions was different among PM2.5 and PM0.1 samples, which was partly owing to the metal catalysts for soot oxidation. The correlations between char-EC and soot-EC showed that char-EC dominated EC in PM2.5 while soot-EC dominated EC in PM0.1. Using eight individual carbon fractions, the gasoline and diesel source profiles of PM0.1 and PM2.5 were extracted and analyzed with the positive matrix factorization (PMF) method. © 2010.


Chen S.-C.,National Chiao Tung University | Tsai C.-J.,National Chiao Tung University | Huang C.-Y.,National Chiao Tung University | Chen H.-D.,National Chiao Tung University | And 10 more authors.
Aerosol Science and Technology | Year: 2010

Ambient ultrafine particles (UPs or PM0.1), PM2.5 and PM10 were investigated at the roadside of Syuefu road in Hsinchu city and in the Syueshan highway tunnel in Taipei, Taiwan. A SMPS (TSI Model 3936), three Dichotomous samplers (Andersen Model SA-241), and three MOUDIs (MSP Model 110) were collocated to determine the PM number and mass concentrations simultaneously. The filter samples were further analyzed for organic carbon (OC), element carbon (EC), water-soluble ions, and trace elements. The OC artifact was studied and quantified using the quartz behind quartz (QBQ) method for all PM fractions. Taking into account the OC artifact, chemical mass closure (ratio of the reconstructed chemical mass to the gravimetrical mass) of PM 0.1, PM2.5, and PM10 was then calculated and found to be good. The chemical analysis results of UPs at both sites showed that UPs in the present tunnel was mostly contributed from the vehicle emissions while UPs at the roadside was mainly influenced by urban sources. © 2010 American Association for Aerosol Research.


Gugamsetty B.,National Chiao Tung University | Wei H.,National Chiao Tung University | Liu C.-N.,National Chiao Tung University | Awasthi A.,National Chiao Tung University | And 4 more authors.
Aerosol and Air Quality Research | Year: 2012

Ambient Particulate Matters (PM10, PM2.5 and PM0.1) were investigated at Shinjung station in New Taipei City, Taiwan. Samples were collected simultaneously using a dichotomous sampler (Andersen Model SA-241) and a MOUDI (MSP Model 110) over a 24-h period from May 2011 to November 2011 at Shinjung station. Samples were analyzed for metallic trace elements using ion coupled plasma mass spectroscopy (ICP-MS) and ionic compounds by ion chromatography (IC). The average concentrations of PM10, PM2.5 and PM0.1 were found to be 39.45 ± 11.58, 21.82 ± 7.50 and 1.42 ± 0.56 μg/m3, respectively. Based on the chemical information, positive matrix factorization (PMF) was used to identify PM sources. A total of five source types were identified, soil dust, vehicle emissions, sea salt, industrial emissions and secondary aerosols, and their contributions were estimated using PMF. The crustal enrichment factors (EF) were calculated using Al as a reference for the trace metal species to identify the sources. Conditional probability functions (CPF) were computed using wind profiles and factor contributions. The results of CPF analysis were used to identify local point sources. The results suggest a competitive relationship between anthropogenic and natural source processes over the monitoring station. © Taiwan Association for Aerosol Research.

Loading Office of Sustainable Development collaborators
Loading Office of Sustainable Development collaborators