Frankfurt am Main, Germany
Frankfurt am Main, Germany

Time filter

Source Type

Milickovic N.,Offenbach Clinic | Mavroidis P.,Karolinska Institutet | Tselis N.,Offenbach Clinic | Nikolova I.,Offenbach Clinic | And 5 more authors.
Medical Physics | Year: 2011

Purpose: Modern HDR brachytherapy treatment for prostate cancer based on the 3D ultrasound (U/S) plays increasingly important role. The purpose of this study is to investigate possible patient movement and anatomy alteration between the clinical image set acquisition, made after the needle implantation, and the patient irradiation and their influence on the quality of treatment. Methods: The authors used 3D U/S image sets and the corresponding treatment plans based on a 4D-treatment planning procedure: plans of 25 patients are obtained right after the needle implantation (clinical plan is based on this 3D image set) and just before and after the treatment delivery. The authors notice the slight decrease of treatment quality with increase of time gap between the clinical image set acquisition and the patient irradiation. 4D analysis of dose-volume-histograms (DVHs) for prostate: CTV1 PTV, and urethra, rectum, and bladder as organs at risk (OARs) and conformity index (COIN) is presented, demonstrating the effect of prostate, OARs, and needles displacement. Results: The authors show that in the case that the patient body movement/anatomy alteration takes place, this results in modification of DVHs and radiobiological parameters, hence the plan quality. The observed average displacement of needles (1 mm) and of prostate (0.57 mm) is quite small as compared with the average displacement noted in several other reports A. A. Martinez, Int. J. Radiat. Oncol., Biol., Phys. 49(1), 61-69 (2001); S. J. Damore, Int. J. Radiat. Oncol., Biol., Phys. 46(5), 1205-1211 (2000); P. J. Hoskin, Radiotherm. Oncol. 68(3), 285-288 (2003); E. Mullokandov, Int. J. Radiat. Oncol., Biol., Phys. 58(4), 1063-1071 (2004) in the literature. Conclusions: Although the decrease of quality of dosimetric and radiobiological parameters occurs, this does not cause clinically unacceptable changes to the 3D dose distribution, according to our clinical protocol. © 2011 American Association of Physicists in Medicine.


Knaup C.,University of Texas Health Science Center at San Antonio | Mavroidis P.,University of Texas Health Science Center at San Antonio | Mavroidis P.,University of Stockholm | Esquivel C.,University of Texas Health Science Center at San Antonio | And 5 more authors.
Journal of Radiotherapy in Practice | Year: 2013

Purpose: Several isotopes are available for low dose-rate prostate brachytherapy. Currently most implants use a single isotope. However, the use of dual-isotope implants may yield an advantageous combination of characteristics such as half-life and relative biological effectiveness. However, the use of dual-isotope implants complicates treatment planning and quality assurance. Do the benefits of dual-isotope implants outweigh the added difficulty? The goal of this work was to use a linear-quadratic model to compare single and dual-isotope implants. Materials & Methods: Ten patients were evaluated. For each patient, six treatment plans were created with single or dual-isotope combinations of 125I, 103Pd and 131Cs. For each plan the prostate, urethra, rectum and bladder were contoured by a physician. The biologically effective dose was used to determine the tumor control probability and normal tissue complication probabilities for each plan. Each plan was evaluated using favorable, intermediate and unfavorable radiobiological parameters. The results of the radiobiological analysis were used to compare the single and dual-isotope treatment plans. Results: Iodine-125 only implants were seen to be most affected by changes in tumor parameters. Significant differences in organ response probabilities were seen at common dose levels. However, after adjusting the initial seed strength the differences between isotope combinations were minimal. Conclusions: The objective of this work was to perform a radiobiologically based comparison of single and dual-isotope prostate seed implant plans. For all isotope combinations, the plans were improved by varying the initial seed strength. For the optimized treatment plans, no substantial differences in predicted treatment outcomes were seen among the different isotope combinations. Copyright © 2012 Cambridge University Press.


Knaup C.,University of Texas Health Science Center at San Antonio | Mavroidis P.,University of Texas Health Science Center at San Antonio | Mavroidis P.,Karolinska Institutet | Swanson G.,University of Texas Health Science Center at San Antonio | And 4 more authors.
Journal of Radiotherapy in Practice | Year: 2013

Purpose: Comparison of prostate seed implant treatment plans is currently based on evaluation of dose-volume histograms and doses to the tumour and normal structures. However, these do not account for effects of varying dose-rate, tumour repopulation and other biological effects. In this work, incorporation of the radiobiological response is used to obtain a more inclusive and clinically relevant treatment plan evaluation tool. Materials and Methods: Ten patients were evaluated. For each patient, six different treatment plans were created on the Prowess system. Plans with iodine-125 used a prescription dose of 145 Gy while plans with palladium-103 used 115 Gy. The biologically effective dose was used together with the tumour control probability and the normal tissue complication probabilities of urethra, bladder, rectum and surrounding tissue to evaluate the effectiveness of each treatment plan. Results from the radiobiological evaluation were compared to standard dose quantifiers. Results: The use of response probabilities is seen to provide a simpler means of treatment evaluation compared to standard dose quantifiers. This allows for different treatment plans to be quickly compared. Additionally, the use of radiobiologically-based plan evaluation allows for optimisation of seed type and initial seed strengths to find the ideal balance of TCP and NTCP. Conclusion: The goal of this work was to incorporate the biological response to obtain a more complete and clinically relevant treatment plan evaluation tool. This resulted in a simpler means of plan evaluation that may be used to compare and optimise prostate seed implant treatment plans. Copyright © 2012 Cambridge University Press.


Modern HDR brachytherapy treatment for prostate cancer based on the 3D ultrasound (U/S) plays increasingly important role. The purpose of this study is to investigate possible patient movement and anatomy alteration between the clinical image set acquisition, made after the needle implantation, and the patient irradiation and their influence on the quality of treatment.The authors used 3D U/S image sets and the corresponding treatment plans based on a 4D-treatment planning procedure: plans of 25 patients are obtained right after the needle implantation (clinical plan is based on this 3D image set) and just before and after the treatment delivery. The authors notice the slight decrease of treatment quality with increase of time gap between the clinical image set acquisition and the patient irradiation. 4D analysis of dose-volume-histograms (DVHs) for prostate: CTV1=PTV, and urethra, rectum, and bladder as organs at risk (OARs) and conformity index (COIN) is presented, demonstrating the effect of prostate, OARs, and needles displacement.The authors show that in the case that the patient body movement/anatomy alteration takes place, this results in modification of DVHs and radiobiological parameters, hence the plan quality. The observed average displacement of needles (1 mm) and of prostate (0.57 mm) is quite small as compared with the average displacement noted in several other reports [A. A. Martinez et al., Int. J. Radiat. Oncol., Biol., Phys. 49(1), 61-69 (2001); S. J. Damore et al., Int. J. Radiat. Oncol., Biol., Phys. 46(5), 1205-1211 (2000); P. J. Hoskin et al., Radiotherm. Oncol. 68(3), 285-288 (2003); E. Mullokandov et al., Int. J. Radiat. Oncol., Biol., Phys. 58(4), 1063-1071 (2004)] in the literature.Although the decrease of quality of dosimetric and radiobiological parameters occurs, this does not cause clinically unacceptable changes to the 3D dose distribution, according to our clinical protocol.

Loading Offenbach Clinic collaborators
Loading Offenbach Clinic collaborators