Zelzate, Belgium
Zelzate, Belgium

Time filter

Source Type

Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: NMP-2010-4.0-3 | Award Amount: 22.10M | Year: 2011

The core concept of Accelerated Metallurgy is to deliver an integrated pilot-scale facility for the combinatorial synthesis and testing of many thousands of unexplored alloy formulations. This facility would be the first of its kind in the world and would represent a significant advance for metallurgy. The novel technology that enables this HTT facility is based on automated, direct laser deposition (DLD). The key feature of this technology is the way in which a mixture of elemental powders is accurately and directly fed into the lasers focal point, heated by the laser beam, and deposited on a substrate in the form of a melt pool, which finally solidifies to create a unique fully-dense alloy button with precise stoichiometry. This robotic alloy synthesis is 1000 times faster than conventional manual methods. Once produced, these discrete mm-sized samples are submitted to a range of automated, standardised tests that will measure chemical, physical and mechanical properties. The vast amount of information will be recorded in a Virtual Alloy Library and coupled with computer codes such as neural network models, in order to extract and map out the key trends linking process, composition, structure and properties. The most promising alloy formulations will be further tested, patented and exploited by the 20 end-users. Industrial interests include: (i) new lightweight fuel-saving alloys (<4.5 g/cm3) for aerospace and automotive applications; (ii) new higher-temperature alloys (stable>1000C) for rockets, gas turbines, jet-engines, nuclear fusion; (iii) new high-Tc superconductor alloys (>30K) that can be wire-drawn for electrical applications; (iv) new high-ZT thermoelectric alloys for converting waste heat directly into electricity; (v) new magnetic and magnetocaloric alloys for motors and refrigeration; and (vi) new phase-change alloys for high-density memory storage. The accelerated discovery of these alloy formulations will have a very high impact on society.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: OCEAN 2013.3 | Award Amount: 9.97M | Year: 2013

The BYEFOULING project will address high volume production of low toxic and environmentally friendly antifouling coatings for mobile and stationary maritime applications. The technology will fulfil the coating requirements as a result of the incorporation of novel antifouling agents and a new set of binders into coating formulations for maritime transportation and fishing vessels, floating devices and aquaculture. The main vision of BYEFOULING is to provide the means for industrial, cost-effective and robust manufacturing of antifouling coatings in Europe, where SMEs are both coating components developers and production technology providers. A set of procedures, guidelines and fabrication tools will be developed, enabling short time to market for new coating concepts. The main goal of BYEFOULING is to design, develop and upscale antifouling coatings with enhanced performance compared to current available products. The approach in BYEFOULING is to tackle the different stages of the biofouling process using innovative antifouling agents, covering surface-structured materials, protein adsorption inhibitors, quorum sensing inhibitors, natural biocides and microorganisms with antifouling properties. Encapsulation of the innovative compounds in smart nanostructured materials will be implemented to optimize coating performance and cost all along their life cycle. A proof-of-concept for the most promising candidates will be developed and demonstrators will be produced and tested on fields. BYEFOULING will combine a multidisciplinary leading research team from 11 European countries, which are already acting worldwide in the scientific community, with highly relevant and skilled technological partners, to build a consortium able to develop a full production line for antifouling coatings in Europe. Readily available low toxic and cost-effective antifouling coatings will increase the efficiency of maritime industry and be the enabling technology to realize new products.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: Fission-2010-2.3.3 | Award Amount: 12.18M | Year: 2011

The 2010-2012 implementation plan of the European Sustainable Nuclear Industrial Initiative (ESNII), in the frame of the Sustainable Nuclear Energy Technology Platform (SNE TP), establishes a very tight time schedule for the start of construction of the European Gen IV prototypes; namely the construction of the LFR ETPP (European Technology Pilot Plant) Myrrha will start in 2014 and that of the SFR Prototype ASTRID will start in 2017. The GEN IV reactors pose new challenges to the designers and scientists in terms of higher operating temperature and higher irradiation damage of materials with respect to the present technologies. In this frame, the MATTER (MATerials TEsting and Rules) Project intends to start well targeted researches to perform careful studies of materials behaviors in GEN IV operational conditions and to find out criteria for the correct use of these materials in relevant reactor applications. Aim of the present Project is to complement the materials researches, in the frame of the EERA guidelines, with the implementation of pre-normative rules. The Project comprehends: - Mature materials research focused on testing procedures for the new reactors conditions - Supporting experiments of mature materials aimed to liquid metals characterization and to pre-normative qualification, - Pre-normative activities, comprehensive of experiments, to revise and update the design rules, - Preparation and starting of the EERA Joint Program by harmonization of the structure and finalization of the preliminary program in accordance with the deployment strategy of the SNETP. A relevant advantage of this approach consists in the possibility to achieve a correct aiming for the expensive materials testing operations. Other advantages are the comparability of the experimental data, being produced by consensual procedures, and the immediate availability of the experimental results (at least for some properties) in view of their pre-normative deployment.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENERGY.2012.5.2.2 | Award Amount: 3.99M | Year: 2013

The CO2QUEST proposal addresses the fundamentally important issues regarding the impact of the typical impurities in the gas or dense phase CO2 stream captured from fossil fuel power plants on its safe and economic transportation and storage. The proposed work programme will focus on the development of state-of-the art mathematical models backed by laboratory and industrial-scale experimentation utilising unique EC funded test facilities to perform a comprehensive techno-economic, risk-based assessment of the impact of the CO2 stream impurities on phase behaviour and chemical reactions, and on pipeline and storage site integrities. The above involves the determination of the important CO2 mixtures that have the most profound impact on the pipeline pressure drop, compressor power requirements, pipeline propensity to ductile and brittle facture propagation, corrosion of the pipeline and wellbore materials, geochemical interactions within the wellbore and storage site, and the ensuing health and environmental hazards. Based on a cost/benefit analysis and whole system approach, the results will in turn be used to provide recommendations for tolerance levels, mixing protocols and control measures for pipeline networks and storage infrastructure. CO2QUEST addresses all the main themes of this Call in several ways. It involves the active participation of key players from the Carbon Capture Sequestration Forum, in particular China (partner), Canada and USA (Strategic Committee Members), and the worlds leading steel producer representing a CO2 intensive industry. CO2QUEST involves the participation of leading academics with directly relevant fundamental and pre-normative research track records. A main focus of attention will be maximising the projects impact by ensuring that its results are effectively exploited and actively disseminated, in particular, supporting the development of relevant design and operation standards for CCS infrastructure.


A pipe for a pipeline installation includes a UV-cured coating on the inner surface of the pipe, the coating having been obtained by UV-curing a coating composition including at least the following components: one or more oligomers, being photocurable (meth)acrylate resins; one or more (meth)acrylate monomers; one or more adhesion promoters; iron oxide or more photopolymerization initiators. A liquid coating composition may be applied to the interior surface of a pipe and cured.


Patent
OCAS NV inc | Date: 2014-08-04

The invention pertains to a structure for use in a humid environment, comprising: a primary structural element, which primary structural element is made of metal and is provided with a coating, which coating has a composition comprising zinc in a content of at least 40 wt % based on the weight of the coating, a secondary structural element, which secondary structural element is made of metal and is provided with a coating, which coating is an alloy comprising aluminum and manganese, in which alloy the content of aluminum and manganese together is at least 90 wt % based on the weight of the coating, which alloy comprises more aluminum by weight than manganese, and wherein the primary structural element and the secondary structural element are in electrical contact with each other.


The present invention is related to a method for depositing a coating on a substrate (2) by a flame-assisted chemical vapour deposition technique, wherein the substrate is exposed to a flame produced by a burner (1), while a flow of precursor elements is added to said flame, and wherein the substrate is subjected to a relative movement with respect to said burner wherein the flame is dragged out along a reaction zone (3) situated behind the burner, and wherein the relative speed of the substrate with respect to the flame is higher than 30 m/min.

Loading OCAS NV inc collaborators
Loading OCAS NV inc collaborators