Entity

Time filter

Source Type

Apeldoorn, Netherlands

Hamann E.,Carl von Ossietzky University | Hamann E.,GeoDienste GmbH | Stuyfzand P.J.,KWR Watercycle Research Institute | Stuyfzand P.J.,Technical University of Delft | And 3 more authors.
Science of the Total Environment | Year: 2016

The fate of organic micropollutants during long-term/long-distance river bank filtration (RBF) at a temporal scale of several years was investigated along a row of monitoring wells perpendicular to the Lek River (the Netherlands). Out of 247 compounds, which were irregularly analyzed in the period 1999-2013, only 15 were detected in both the river and river bank observation wells. Out of these, 10 compounds (1,4-dioxan, 1,5-naphthalene disulfonate (1,5-NDS), 2-amino-1,5-NDS, 3-amino-1,5-NDS, AOX, carbamazepine, EDTA, MTBE, toluene and triphenylphosphine oxide) showed fully persistent behavior (showing no concentration decrease at all), even after 3.6 years transit time. The remaining 5 compounds (1,3,5-naphthalene trisulfonate (1,3,5-NTS), 1,3,6-NTS, diglyme, iopamidol, triglyme) were partially removed. Their reactive transport parameters (removal rate constants/half-lives, retardation coefficients) were inferred from numerical modeling. In addition, maximum half-lives for 14 of the fully removed compounds, for which the data availability was sufficient to deduce 100% removal during sub-surface passage, were approximated based on travel times to the nearest well. The study is one of very few reporting on the long-term field-scale behavior of organic micropollutants. It highlights the efficiency of RBF for water quality improvement as a pre-treatment step for drinking water production. However, it also shows the very persistent behavior of various compounds in groundwater. © 2015 Elsevier B.V. Source


Van Halem D.,Technical University of Delft | de Vet W.,Technical University of Delft | de Vet W.,Oasen Drinking Water Company | Verberk J.,Technical University of Delft | And 3 more authors.
Applied Geochemistry | Year: 2011

The principle of subsurface iron removal for drinking water supply is that aerated water is periodically injected into the aquifer through a tube well. On its way into the aquifer, the injected O2-rich water oxidizes adsorbed Fe 2+, creating a subsurface oxidation zone. When groundwater abstraction is resumed, the soluble Fe 2+ is adsorbed and water with reduced Fe concentrations is abstracted for multiple volumes of the injection water. In this article, Fe accumulation deposits in the aquifer near subsurface treatment wells were identified and characterized to assess the sustainability of subsurface iron removal regarding clogging of the aquifer and the potential co-accumulation of other groundwater constituents, such as As. Chemical extraction of soil samples, with Acid-Oxalate and HNO3, showed that Fe had accumulated at specific depths near subsurface iron removal wells after 12 years of operation. Whether it was due to preferred flow paths or geochemical mineralogy conditions; subsurface iron removal clearly favoured certain soil layers. The total Fe content increased between 11.5 and 390.8 mmol/kg ds in the affected soil layers, and the accumulated Fe was found to be 56-100% crystalline. These results suggest that precipitated amorphous Fe hydroxides have transformed to Fe hydroxides of higher crystallinity. These crystalline, compact Fe hydroxides have not noticeably clogged the investigated well and/or aquifer between 1996 and 2008. The subsurface iron removal wells even need less frequent rehabilitation, as drawdown increases more slowly than in normal production wells. Other groundwater constituents, such as Mn, As and Sr were found to co-accumulate with Fe. Acid extraction and ESEM-EDX showed that Ca occurred together with Fe and by X-ray Powder Diffraction it was identified as calcite. © 2010 Elsevier Ltd. All rights reserved. Source


de Vet W.W.J.M.,Oasen Drinking Water Company | de Vet W.W.J.M.,Technical University of Delft | Dinkla I.J.T.,Bioclear BV | Abbas B.A.,Technical University of Delft | And 2 more authors.
Biotechnology and Bioengineering | Year: 2012

The growth of iron-oxidizing bacteria, generally regarded as obligate microaerophilic at neutral pH conditions, has been reported in a wide range of environments, including engineered systems for drinking water production. This research focused on intensively aerated trickling filters treating deep anaerobic and subsurface aerated groundwater. The two systems, each comprising groundwater abstraction and trickling filtration, were monitored over a period of 9 months. Gallionella spp. were quantified by qPCR with specifically designed 16S rRNA primers and identified directly in the environmental samples using clone libraries with the same primers. In addition, enrichments in gradient tubes were evaluated after DGGE separation with general bacterial primers. No other iron-oxidizing bacteria than Gallionella spp. were found in the gradient tubes. qPCR provided an effective method to evaluate the growth of Gallionella spp. in these filter systems. The growth of Gallionella spp. was stimulated by subsurface aeration, but these bacteria hardly grew in the trickling filter. In the uninfluenced, natural anaerobic groundwater, Gallionella spp. were only present in low numbers, but they grew extensively in the trickling filter. Identification revealed that Gallionella spp., growing in the trickling filter were phylogenetically distinct from the species found growing during subsurface aeration, indicating that the different conditions in both systems selected for niche organisms, while inhibiting other groups. The results suggest a minor direct significance for inoculation of Gallionella spp. during filtration of subsurface aerated groundwater. © 2011 Wiley Periodicals, Inc. Source


De Vet W.W.J.M.,Oasen Drinking Water Company | De Vet W.W.J.M.,Technical University of Delft | Van Loosdrecht M.C.M.,Technical University of Delft | Rietveld L.C.,Technical University of Delft
Water Research | Year: 2012

Phosphorus limitation has been demonstrated for heterotrophic growth in groundwater, in drinking water production and distribution systems, and for nitrification of surface water treatment at low temperatures. In this study, phosphorus limitation was tested, in the Netherlands, for nitrification of anaerobic groundwater rich in iron, ammonium and orthophosphate. The bioassay method developed by Lehtola etal. (1999) was adapted to determine the microbially available phosphorus (MAP) for nitrification. In standardized batch experiments with an enriched mixed culture inoculum, the formation of nitrite and nitrate and ATP and the growth of ammonia-oxidizing bacteria (AOB; as indicated by qPCR targeting the amoA-coding gene) were determined for MAP concentrations between 0 and 100μg PO 4-PL -1. The nitrification and microbial growth rates were limited at under 100μg PO 4-PL -1 and virtually stopped at under 10μg PO 4-PL -1. In the range between 10 and 50μg PO 4-PL -1, a linear relationship was found between MAP and the maximum nitrification rate. AOB cell growth and ATP formation were proportional to the total ammonia oxidized. Contrary to Lehtola etal. (1999), biological growth was very slow for MAP concentrations less than 25μg PO 4-PL -1. No full conversion nor maximum cell numbers were reached within 19 days. In full-scale groundwater filters, most of the orthophosphate was removed alongside with iron. The remaining orthophosphate appeared to have only limited availability for microbial growth and activity. In some groundwater filters, nitrification was almost totally prevented by limitation of MAP. In batch experiments with filtrate water from these filters, the nitrification process could be effectively stimulated by adding phosphoric acid. © 2011 Elsevier Ltd. Source


Van der Laan H.,Technical University of Delft | Van der Laan H.,Oasen Drinking Water Company | van Halem D.,Technical University of Delft | Smeets P.W.M.H.,KWR Watercycle Research Institute | And 7 more authors.
Water Research | Year: 2014

In 2012 more than 4 million people used a ceramic pot filter (CPF) as household water treatment system for their daily drinking water needs. In the normal production protocol most low cost filters are impregnated with a silver solution to enhance the microbial removal efficiency. The aim of this study was to determine the role of silver during the filtration and subsequent storage. Twenty-two CPFs with three different silver applications (non, only outside and both sides) were compared in a long-term loading experiment with Escherichia coli (K12 and WR1) and MS2 bacteriophages in natural challenge water under highly controlled laboratory circumstances. No significant difference in Log Removal Values were found between the filters with different silver applications. The results show that the storage time in the receptacle is the dominant parameter to reach E. coli inactivation by silver, and not the contact time during the filtration phase. The hypothesis that the absence of silver would enhance the virus removal, due to biofilm formation on the ceramic filter element, could not be confirmed. The removal effectiveness for viruses is still of major concern for the CPF. This study suggests that the ceramic pot filter characteristics, such as burnt material content, do not determine E. coli removal efficacies, but rather the contact time with silver during storage is the dominant parameter to reach E. coli inactivation. © 2013 Elsevier Ltd. Source

Discover hidden collaborations