Time filter

Source Type

BELCAMP, Md.--(BUSINESS WIRE)--ORAU is currently accepting applications for the U.S. Army Research Laboratory’s (ARL) 2017 Summer Journeyman Fellowship Program. Science and engineering graduate students and recent postgraduates at the bachelors and masters level are encouraged to apply. Selected candidates will participate in research at a state-of-the-art laboratory located at either the U.S. Army’s Aberdeen Proving Ground facility or in Adelphi, Md. Research projects conducted under the mentorship of a scientist or engineer will support ARL’s mission to develop technologies that will support army forces in meeting future operational needs. Applicants must have at least a bachelor’s degree and have a discipline in a STEM research area. Selected participants will receive a monthly stipend for their participation in the program which runs from May 15 through Sept. 30, 2017. All applications must be submitted online at http://www.orau.org/arlfellowship/applicants/programs/journeyman-fellows-summer-program.htm no later than March 17, 2017. For more information, visit www.orau.org/maryland or contact the ORAU Maryland office at (410) 306-9200 or email at Recruiter@orau.org. ORAU provides innovative scientific and technical solutions to advance national priorities in science, education, security and health. Through specialized teams of experts, unique laboratory capabilities and access to a consortium of more than 100 major Ph.D.-granting institutions, ORAU works with federal, state, local and commercial customers to advance national priorities and serve the public interest. A 501(c)(3) nonprofit corporation and federal contractor, ORAU manages the Oak Ridge Institute for Science and Education (ORISE) for the U.S. Department of Energy (DOE). Learn more about ORAU at www.orau.org. Like us on Facebook: https://www.facebook.com/OakRidgeAssociatedUniversities


News Article | October 23, 2015
Site: news.mit.edu

Anne White has always relished challenges. As an undergraduate, she was fascinated by fluid dynamics, and the prospect of nuclear fusion as a game-changing energy source. She followed those passions to her current position as the Cecil and Ida Green Associate Professor of Nuclear Science and Engineering, where she spends much of her time studying plasma turbulence — which is a challenge unto itself. “I like it because it’s really difficult,” she says. “You take fluid turbulence and add electrical and magnetic fields, which make it even harder to understand. Then you heat it to 100 million degrees and have to figure out ways to measure it and see what it’s doing. That’s why I’m at home here at MIT — everyone’s really excited about tough things.” But plasma turbulence isn’t just an intellectual exercise for MIT’s Department of Nuclear Science and Engineering. It’s also a key obstacle in the worldwide effort to realize fusion’s potential as a clean, economical source of electricity, fueled by safe and readily available materials. Achieving that potential requires the reliable creation and harnessing of “burning plasmas” — ongoing reactions in a charged, superheated gas that create more energy than they consume, the same process that powers stars. “We’ve been able to achieve the plasma densities and temperatures we need, but haven’t been able to keep the plasma dense enough and hot enough for a long enough time to achieve a burning state,” notes White. The problem is turbulence, which saps heat from the plasma and stops the fusion of atomic nuclei. White’s team, working at MIT’s Plasma Science and Fusion Center (PSFC) and in intensive collaboration with other groups worldwide, is an international leader in assessing and refining the mathematical models used in fusion reactor design. “We compare turbulence transport models with experimental data, validating them so there can be confidence in their predictive ability,” she says. This work has led to a new perspective on the nature of plasma turbulence, a discovery that has changed the standard model used to understand conditions inside fusion reactors. “We’ve always known that there’s big turbulence, on scale of an ion Larmor radius [the radius of the helical path of a charged particle in a magnetic field], and much smaller turbulence, on the scale of an electron Larmor radius, and that each can be dominant at different times,” explains White. “You’d expect electron turbulence to be dominant in more extreme plasma conditions. But all indications are that it’s dominant even in simple vanilla plasma processes, which was unexpected.” That discovery (which involved doctoral student Choongki Sung, undergraduate Curran Oi, and collaborating scientists from the Oak Ridge Institute for Science and Education, the University of California at San Diego, and General Atomics) is now backed up by new cutting-edge simulation results. The project is informing research across the fusion community, and represents the type of collaborative development that will be a model for the PSFC going forward. Much international attention is currently focused on the International Thermonuclear Experimental Reactor (ITER), currently being built in France. The facility, one of the biggest scientific projects in history, will be a milestone, but White says subsequent generations of reactors must quicken the pace. “There’s great confidence that when ITER is built, it will [achieve burning plasma], we know the development path,” says White. “The trouble is that the existing path is so big and expensive, and the time step between iterative experiments is so long, that advancement gets stifled.” One promising avenue is smaller, more nimble projects, like MIT’s proposed Affordable, Robust, Compact reactor design, which is being explored at PSFC under newly appointed director Dennis Whyte. “This type of smaller, more modular reactor is a way of leaping ahead and evaluating advances in materials science, magnet technology, and other fields,” says White, who notes that the trend will make reliable plasma transport models even more important. White, who recently received the School of Engineering’s Junior Bose Award for teaching as well as several national honors for her research, maintains an active class schedule — graduate plasma physics, an undergraduate electronics class and the popular 22.012 (Seminar in Fusion and Plasma Physics), which attracts undergrads from across the Institute and other local universities. “They’re really excited about fusion and energy,” says White, who hopes to bring more students (including undergraduates) into her group’s efforts. While acknowledging that the path to practical fusion will be long and expensive, White takes heart from the fact that with ITER, “countries representing more than half the world’s population are working on a $20 billion science project. On balance, isn’t it amazing that all these countries are teaming up to do something for the good of the world? The science will be awesome, but science for peace is a really strong thing.”


King B.A.,Centers for Disease Control and Prevention | Alam S.,Centers for Disease Control and Prevention | Alam S.,Oak Ridge Institute for Science and Education | Promoff G.,Centers for Disease Control and Prevention | And 2 more authors.
Nicotine and Tobacco Research | Year: 2013

Introduction: Electronic cigarettes, or e-cigarettes, were introduced into the U.S. market in recent years. However, little is known about the health impact of the product or the extent of its use. This study assessed the prevalence and correlates of awareness and ever-use of e-cigarettes among U.S. adults during 2010-2011. Methods: Data were obtained from the HealthStyles survey, a national consumer-based survey of U.S. adults aged =18 years old. In 2010, data collection for the HealthStyles survey was both mail-based (n = 4,184) and web-based (n = 2,505), and in 2011, web-based (n = 4,050) only. Estimates of awareness and ever-use of e-cigarettes were calculated overall and by sex, age, race/ ethnicity, educational attainment, household income, region, and smoking status. Results: In 2010, overall awareness of e-cigarettes was 38.5% (mail survey) and 40.9% (web survey); in 2011, awareness was 57.9% (web survey). Ever-use of e-cigarettes among all respondents was 2.1% in the 2010 mail survey, 3.3% in the 2010 web survey, and 6.2% in the 2011 web survey. Ever-use of e-cigarettes was significantly higher among current smokers compared with both former and never-smokers, irrespective of survey method or year. During 2010-2011, ever-use increased among both sexes, those aged 45-54 years, non-Hispanic Whites, those living in the South, and current and former smokers. Conclusions: Awareness and ever-use of e-cigarettes increased among U.S. adults from 2010 to 2011. In 2011, approximately 1 in 5 current smokers reported having ever-used e-cigarettes. Continued surveillance of e-cigarettes is needed for public health planning. © The Author 2013. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved.


OAK RIDGE, Tenn.--(BUSINESS WIRE)--Students interested in spending next spring or summer expanding their experience in nuclear engineering or science research can apply now for upcoming research opportunities being offered through the Nuclear Engineering Science Laboratory Synthesis (NESLS). NESLS, a cooperative research initiative at Oak Ridge National Laboratory (ORNL) that is administered through the Oak Ridge Institute for Science and Education (ORISE), is accepting applications for spring and summer 2017. NESLS offers students like Massachusetts Institute of Technology’s Briana Hiscox, hands-on educational and research opportunities in areas that may include nuclear security technologies; nuclear systems analysis, design and safety; and fuels, isotopes, and nuclear materials. Other features of the internship include: To be eligible, students must be enrolled at an accredited U.S. college or university in a nuclear engineering, science, or eligible related field with a 3.0/4.0 cumulative GPA at the time of appointment. Community college students must be working toward an Associate of Science or Associate of Engineering degree. All awards and active participation in the program are contingent upon security access approval to ORNL. For the spring 2017 internships, applicants must apply by Jan. 6, 2017, and for the summer 2017 opportunities, applicants must apply by Feb. 28, 2017. All applications must be submitted through the online application system. Students can also visit http://www.orau.org/ornl/ for more information on this program and other educational opportunities that are currently seeking applicants. The Oak Ridge Institute for Science and Education is a U.S. Department of Energy institute focusing on scientific initiatives to research health risks from occupational hazards, assess environmental cleanup, respond to radiation medical emergencies, support national security and emergency preparedness, and educate the next generation of scientists. ORISE is managed by ORAU.


News Article | December 8, 2016
Site: www.businesswire.com

BELCAMP, Md.--(BUSINESS WIRE)--The Oak Ridge Institute for Science and Education (ORISE) is currently accepting applications for 2017summer internship appointments with the U.S. Army Institute of Surgical Research (USAISR). Undergraduate students from accredited colleges and universities are encouraged to apply for research appointments at USAISR’s facility located in San Antonio, Texas. The intent of the undergraduate student internship is to provide an opportunity for students interested in science, engineering or medical career fields to participate in research directed at improving the care of injured military service members and society at large. This mentored research experience will expose interns to ongoing efforts in integrated science, technology and engineering solutions at the nation's premier military trauma research institute. Applicants must have completed at least their first year class requirements for a bachelor’s degree with an overall GPA of 3.5 or higher. A science or engineering program of study is preferred. Selected candidates will be compensated $2,750 per month, based upon full-time participation in the internship which runs from May 24 through Aug. 2, 2017, with an optional 2-week extension. All applications must be submitted online at https://www.orau.org/maryland/isr.html no later than Dec. 31, 2016. For more information, visit www.orau.org/maryland, or contact ORISE at (410) 306-9200 or email Recruiter@orau.org. ORISE is a U.S. Department of Energy institute focusing on scientific initiatives to research health risks from occupational hazards, assess environmental cleanup, respond to radiation medical emergencies, support national security and emergency preparedness, and educate the next generation of scientists. ORISE is managed by ORAU. Like us on Facebook: https://www.facebook.com/pages/Oak-Ridge-Institute-for-Science-and-Education/322092719422?v=app_2373072738


Lloyd I.D.,Oak Ridge Institute for Science and Education | Oppenheimer M.,Princeton University
Global Environmental Politics | Year: 2014

This paper explores the governance options surrounding geoengineering-the deliberate, large-scale manipulation of the Earth's climate system to counteract climate change. The authors focus solely on methods that affect the incoming solar radiation to the atmosphere, referred to as solar radiation management (SRM). They examine whether an international governance framework for SRM is needed, how it should be designed, and whether it is feasible. The authors propose a governance regime that initially has small membership and weak legalization, and is flexible in that future institutional reforms allow for broader membership and deeper commitments. The article provides supporting evidence for key aspects of the regime through past international treaties in arms control and environmental protection, including the Antarctica, Outer Space, and Montreal Protocol treaty regimes. For these cases, acting early and treating the respective problems as part of the "regulation of unexplored territory" produced more effective outcomes than the "national appropriation" approach that characterizes arms control. © 2014 by the Massachusetts Institute of Technology.


Culp L.,CDC Public Health Law Program | Caucci L.,Oak Ridge Institute for Science and Education
American Journal of Preventive Medicine | Year: 2013

Background: Recent large clinical trials have found that pre-exposure prophylaxis (PrEP) reduced HIV infection among men who have sex with men (MSM), but efforts to provide clinical care to minors, including young MSM, may be complicated by a lack of clarity regarding parental consent requirements with respect to medical services. Purpose: The goal of this paper was to analyze law related to a minor's ability to consent to medical care, including HIV diagnostic testing and treatment, and its implications for PrEP. Methods: Analysis was performed in 2012 on laws current as of December 31, 2011. Public Health Law Program staff collected all statutes and regulations pertaining to an adolescent's ability to consent to HIV diagnostic testing and treatment and sexually transmitted infection (STI) diagnostic testing, treatment, and prevention. Results: No state expressly prohibits minors' access to PrEP or other HIV prevention methods. All jurisdictions expressly allow some minors to consent to medical care for the diagnosis or treatment of STIs, but only eight jurisdictions allow consent to preventive or prophylactic services. Thirty-four states either expressly allow minors to consent to HIV services or allow consent to STI or communicable disease services and classify HIV as an STI or communicable disease. Seventeen jurisdictions allow minors to consent to STI testing and treatment, but they do not have an express HIV provision nor classify HIV as an STI or communicable disease. Conclusions: Minors' access to PrEP without parental consent is unclear, and further analysis is needed to evaluate how state law may relate to the provision of clinical interventions for the prevention of HIV infection. © 2013 American Journal of Preventive Medicine.


Meyer D.E.,U.S. Environmental Protection Agency | Upadhyayula V.K.K.,Oak Ridge Institute for Science and Education
Clean Technologies and Environmental Policy | Year: 2014

Nanotechnology is a broad-impact technology with applications ranging from materials and electronics to analytical methods and metrology. The many benefits that can be realized through the utilization of nanotechnology are intended to lead to an improved quality of life. However, numerous concerns have been expressed regarding the unchecked growth of nanotechnology and the unforeseen consequences it may bring. To address the concerns, nanotechnology must be examined under the microscope of sustainability. This work applies the life cycle perspective to provide an understanding of the challenges facing the development of sustainable nanotechnology. A discussion of the holistic tools used to assess the components of sustainability serves as the basis to examine how a harmony between policy and product development can be maintained using decision making for sustainability. This harmony will be most readily achieved using an enhanced risk management strategy for sustainability that combines sustainability assessment with sustainable chemical design. © Springer-Verlag Berlin Heidelberg (outside the USA) 2013.


Upadhyayula V.K.K.,Oak Ridge Institute for Science and Education | Gadhamshetty V.,Rensselaer Polytechnic Institute
Biotechnology Advances | Year: 2010

The ability of carbon nanotubes (CNTs) to undergo surface modification allows them to form nanocomposites (NCs) with materials such as polymers, metal nanoparticles, biomolecules, and metal oxides. The biocidal nature, protein fouling resistance, and fouling release properties of CNT-NCs render them the perfect material for biofouling prevention. At the same time, the cytotoxicity of CNT-NCs can be reduced before applying them as substrates to promote biofilm formation in environmental biotechnology applications. This paper reviews the potential prospects of CNT-NCs to accomplish two widely varying objectives in environmental engineering applications: (i) preventing biofouling, and (ii) promoting the formation of desirable biofilms on materials surface. This paper addresses practical issues such as costs, risks to human health, and ecological impacts that are associated with the application, development and commercialization of CNT-NC technology. © 2010 Elsevier Inc.


Upadhyayula V.K.K.,Oak Ridge Institute for Science and Education
Analytica Chimica Acta | Year: 2012

There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad range of threat agents, including radioactive substances, explosive compounds, chemical warfare agents, biotoxins, and biothreat pathogens through any of the four sensory means mentioned previously. © 2011 Elsevier B.V.

Loading Oak Ridge Institute for Science and Education collaborators
Loading Oak Ridge Institute for Science and Education collaborators