San Diego, CA, United States
San Diego, CA, United States

NuVasive, Inc., based in San Diego, California, is a medical device company focused on the design, development, and marketing of products for the surgical treatment of spine disorders. NuVasive is a publicly traded company and is listed on the NASDAQ under the symbol NUVA.NuVasive’s product portfolio is focused on applications in the over $4.2 billion U.S. spine fusion market. The Company's current principal product offering includes a minimally disruptive surgical platform called Maximum Access Surgery, or MAS, as well as a growing offering of cervical and motion preservation products. MAS combines three categories of NuVasive’s current product offerings: NeuroVision, a proprietary software-driven nerve avoidance system; MaXcess, a unique split-blade design retraction system; and specialized implants. The MAS platform enables procedures such as XLIF, or eXtreme Lateral Interbody Fusion, a minimally disruptive spine surgery that accesses the spine through the patient’s side. This procedure is a more modern surgical option for treatment of scoliosis than the Harrington Rod, which is no longer used. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Patent
NuVasive | Date: 2017-02-01

Systems and methods of treating spinal deformity, including one or more intervertebral implants to be introduced laterally into respective intervertebral spaces, a plurality of bone screws introduced generally laterally into vertebral bodies adjacent to the intervertebral implants and/or the intervertebral implants themselves, and a cable dimensioned to be coupled to the bone screws and manipulated to adjust and/or correct the spinal deformity.


A system, method and computer program product for monitoring in real time, activities of a monitoring individual during remote connection and oversight of intra-operative neurophysiologic monitoring (IONM) data from a plurality of IONM devices of at least one machine type, including receiving IONM data from at least one IONM device regarding a surgery being monitored, receiving patient data about at least one patient, storing case data in a computer database, the case data including information regarding at least one of the patient data or the IONM data, scheduling the monitoring individual to a specific surgery case based on the case data, and providing the case data to the monitoring individual.


Methods are provided for planning, performing, and assessing of surgical correction to the spine during a spinal surgical procedure. These methods are implemented by a control unit through a GUI to digitize screw locations, digitize anatomical reference points, accept one or more correction inputs, and generate one or more rod solution outputs shaped to engage the screws at locations distinct from the originally digitized locations.


The present invention involves systems and related methods for performing surgical procedures and assessments, including the use of neurophysiology-based monitoring to: (a) determine nerve proximity and nerve direction to surgical instruments employed in accessing a surgical target site; (b) assess the pathology (health or status) of a nerve or nerve root before, during, or after a surgical procedure; and/or (c) assess pedicle integrity before, during or after pedicle screw placement, all in an automated, easy to use, and easy to interpret fashion so as to provide a surgeon-driven system.


The present invention involves systems and related methods for performing surgical procedures and assessments, including the use of neurophysiology-based monitoring to: (a) determine nerve proximity and nerve direction to surgical instruments employed in accessing a surgical target site; (b) assess the pathology (health or status) of a nerve or nerve root before, during, or after a surgical procedure; and/or (c) assess pedicle integrity before, during or after pedicle screw placement, all in an automated, easy to use, and easy to interpret fashion so as to provide a surgeon-driven system.


According to some embodiments, systems and methods are provided for non-invasively detecting the force generated by a non-invasively adjustable implantable medical device and/or a change in dimension of a non-invasively adjustable implantable medical device. Some of the systems include a non-invasively adjustable implant, which includes a driven magnet, and an external adjustment device, which includes one or more driving magnets and one or more Hall effect sensors. The Hall effect sensors of the external adjustment device are configured to detect changes in the magnetic field between the driven magnet of the non-invasively adjustable implant and the driving magnet(s) of the external adjustment device. Changes in the magnetic fields may be used to calculate the force generated by and/or a change in dimension of the non-invasively adjustable implantable medical device.


Patent
NuVasive | Date: 2017-03-02

A system for accessing a surgical target site and related methods, involving an initial distraction system for creating an initial distraction corridor, and an assembly capable of distracting from the initial distraction corridor to a secondary distraction corridor and thereafter sequentially receiving a plurality of retractor blades for retracting from the secondary distraction corridor to thereby create an operative corridor to the surgical target site, both of which may be equipped with one or more electrodes for use in detecting the existence of (and optionally the distance and/or direction to) neural structures before, during, and after the establishment of an operative corridor to a surgical target site.


Patent
NuVasive | Date: 2017-02-22

A surgical access system including a tissue distraction assembly and a tissue refraction assembly, both of which may be equipped with one or more electrodes for use in detecting the existence of (and optionally the distance and/or direction to) neural structures before, during, and after the establishment of an operative corridor to a surgical target site.


Patent
NuVasive | Date: 2017-02-27

A system and method for performing spine surgery, including a tissue distraction assembly. The tissue distraction assembly includes an initial dilator, a secondary dilator, a first expander, and a second expander. The tissue distraction assembly is provided with an overall generally oblong shape. The tissue distraction assembly provides for asymmetrical tissue distraction in a single direction.


Patent
NuVasive | Date: 2017-02-28

A system for accessing a surgical target site and related methods, involving an initial distraction system for creating an initial distraction corridor, and an assembly capable of distracting from the initial distraction corridor to a secondary distraction corridor and thereafter sequentially receiving a plurality of retractor blades for retracting from the secondary distraction corridor to thereby create an operative corridor to the surgical target site, both of which may be equipped with one or more electrodes for use in detecting the existence of (and optionally the distance and/or direction to) neural structures before, during, and after the establishment of an operative corridor to a surgical target site.

Loading NuVasive collaborators
Loading NuVasive collaborators