Entity

Time filter

Source Type

Villa San Pietro, Italy

Cappa M.,Unita Operativa di Endocrinologia | Bizzarri C.,Unita Operativa di Endocrinologia | Petroni A.,University of Milan | Carta G.,University of Cagliari | And 7 more authors.
Journal of Inherited Metabolic Disease | Year: 2012

X-linked adrenoleukodystrophy is a rare inherited demyelinating disorder characterized by an abnormal accumulation of very long chain fatty acids, mainly hexacosanoic acid (26:0), due to a mutation of the gene encoding for a peroxisomal membrane protein. The only available, and partially effective, therapeutic treatment consists of dietary intake of a 4:1 mixture of triolein and trierucin, called Lorenzo's oil (LO), targeted to inhibit the elongation of docosanoic acid (22:0) to 26:0. In this study we tested whether, besides inhibiting elongation, an enhancement of peroxisomal beta oxidation induced by conjugated linoleic acid (CLA), will improve somatosensory evoked potentials and modify inflammatory markers in adrenoleukodystrophy females carriers. We enrolled five heterozygous women. They received a mixture of LO (40 g/day) with CLA (5 g/day) for 2 months. The therapeutic efficacy was evaluated by the means of plasma levels of 26:0, 26:0/22:0 ratio, modification of cerebrospinal fluid (CSF) inflammatory markers and somatosensory evoked potentials. Changes of fatty acid profile, and in particular CLA incorporation, were also evaluated in CSF and plasma. The results showed that CLA promptly passes the blood brain barrier and the mixture was able to lower both 26:0 and 26:0/22:0 ratio in plasma. The mixture improved somatosensory evoked potentials, which were previously found unchanged or worsened with dietary LO alone, and reduced IL-6 levels in CSF in three out of five patients. Our data suggest that the synergic activity of CLA and LO, by enhancing peroxisomal beta-oxidation and preventing 26:0 formation, improves the somatosensory evoked potentials and reduces neuroinflammation. © The Author(s) 2011. Source


Piscitelli F.,CNR Institute of Biomolecular Chemistry | Carta G.,University of Cagliari | Carta G.,Nutrisearch Srl | Bisogno T.,CNR Institute of Biomolecular Chemistry | And 11 more authors.
Nutrition and Metabolism | Year: 2011

Background: Omega-3 polyunsaturated fatty acids (-3-PUFA) are known to ameliorate several metabolic risk factors for cardiovascular disease, and an association between elevated peripheral levels of endogenous ligands of cannabinoid receptors (endocannabinoids) and the metabolic syndrome has been reported. We investigated the dose-dependent effects of dietary -3-PUFA supplementation, given as krill oil (KO), on metabolic parameters in high fat diet (HFD)-fed mice and, in parallel, on the levels, in inguinal and epididymal adipose tissue (AT), liver, gastrocnemius muscle, kidneys and heart, of: 1) the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), 2) two anandamide congeners which activate PPAR but not cannabinoid receptors, N-oleoylethanolamine and N-palmitoylethanolamine, and 3) the direct biosynthetic precursors of these compounds. Methods. Lipids were identified and quantified using liquid chromatography coupled to atmospheric pressure chemical ionization single quadrupole mass spectrometry (LC-APCI-MS) or high resolution ion trap-time of flight mass spectrometry (LC-IT-ToF-MS). Results: Eight-week HFD increased endocannabinoid levels in all tissues except the liver and epididymal AT, and KO reduced anandamide and/or 2-AG levels in all tissues but not in the liver, usually in a dose-dependent manner. Levels of endocannabinoid precursors were also generally down-regulated, indicating that KO affects levels of endocannabinoids in part by reducing the availability of their biosynthetic precursors. Usually smaller effects were found of KO on OEA and PEA levels. Conclusions: Our data suggest that KO may promote therapeutic benefit by reducing endocannabinoid precursor availability and hence endocannabinoid biosynthesis. © 2011 Piscitelli et al. Source


Quartu M.,University of Cagliari | Serra M.P.,University of Cagliari | Boi M.,University of Cagliari | Pillolla G.,University of Cagliari | And 15 more authors.
Lipids in Health and Disease | Year: 2012

Background: Ischemia/reperfusion leads to inflammation and oxidative stress which damages membrane highly polyunsaturated fatty acids (HPUFAs) and eventually induces neuronal death. This study evaluates the effect of the administration of Pistacia lentiscus L. essential oil (E.O.), a mixture of terpenes and sesquiterpenes, on modifications of fatty acid profile and endocannabinoid (eCB) congener concentrations induced by transient bilateral common carotid artery occlusion (BCCAO) in the rat frontal cortex and plasma. Methods. Adult Wistar rats underwent BCCAO for 20 min followed by 30 min reperfusion (BCCAO/R). 6 hours before surgery, rats, randomly assigned to four groups, were gavaged either with E.O. (200 mg/0.45 ml of sunflower oil as vehicle) or with the vehicle alone. Results: BCCAO/R triggered in frontal cortex a decrease of docosahexaenoic acid (DHA), the membrane highly polyunsaturated fatty acid most susceptible to oxidation. Pre-treatment with E.O. prevented this change and led further to decreased levels of the enzyme cyclooxygenase-2 (COX-2), as assessed by Western Blot. In plasma, only after BCCAO/R, E.O. administration increased both the ratio of DHA-to-its precursor, eicosapentaenoic acid (EPA), and levels of palmytoylethanolamide (PEA) and oleoylethanolamide (OEA). Conclusions: Acute treatment with E.O. before BCCAO/R elicits changes both in the frontal cortex, where the BCCAO/R-induced decrease of DHA is apparently prevented and COX-2 expression decreases, and in plasma, where PEA and OEA levels and DHA biosynthesis increase. It is suggested that the increase of PEA and OEA plasma levels may induce DHA biosynthesis via peroxisome proliferator-activated receptor (PPAR) alpha activation, protecting brain tissue from ischemia/reperfusion injury. © 2012 Quartu et al. Source

Discover hidden collaborations