Entity

Time filter

Source Type

Buena Park, CA, United States

Moolchandani V.,University of Maryland, Baltimore | Moolchandani V.,Nutrilite Health Institute Amway | Augsburger L.L.,University of Maryland, Baltimore | Gupta A.,U.S. Food and Drug Administration | And 3 more authors.
Drug Development and Industrial Pharmacy | Year: 2016

This study is the second in a series that examines the characterizing and selection of suitable grades of lactose for capsule formulation development. Based upon the previous study, four grades were selected for further study. The effects of drug load and operational variables on formulations derived from these four lactose types were evaluated for physicochemical and mechanical attributes of plugs and their capsules on an instrumented dosing-disc capsule filling machine (H&H KFM/3) using acetaminophen as a model, highly soluble and poorly compressible drug. The results obtained were as follows: (1) flowability reduced upon increasing drug load; (2) powder bed height (PBH) and compression force (CF) had positive significant effect on plug weight (p50.05); (3) ejection force was positively and significantly correlated with increasing speed and CF (p50.05); (4) AL capsule plugs had the highest plug crushing force which was followed by DCL15; (5) the crushing strength of plugs made from DCL11 increased with increasing acetaminophen concentration; (6) higher CF had a significant negative impact on acetaminophen release at 15 min time point (p50.05); (7) at 10% and 40% drug load, formulations containing AL showed the quickest drug release; and (8) increased drug load had a significant negative impact on the release rate at 15 and 45 min time points (p50.05). Overall, the results from this study provides information on risk based assessment of filler selection based on drug load and the range of machine operating variables which will help in defining criteria for meeting key quality attributes for capsule formulation development. © 2015 Taylor & Francis. Source


Moolchandani V.,University of Maryland, Baltimore | Moolchandani V.,Nutrilite Health Institute Amway | Augsburger L.L.,University of Maryland, Baltimore | Gupta A.,U.S. Food and Drug Administration | And 3 more authors.
Drug Development and Industrial Pharmacy | Year: 2015

The purpose of this work is to characterize thermal, physical and mechanical properties of different grades of lactose and better understand the relationships between these properties and capsule filling performance. Eight grades of commercially available lactose were evaluated: Pharmatose 110 M, 125 M, 150 M, 200 M, 350M (α-lactose monohydrate), AL (anhydrous lactose containing ∼80% β-AL), DCL11 (spray dried α-lactose monohydrate containing ∼15% amorphous lactose) and DCL15 (granulated α-lactose monohydrate containing ∼12% β-AL). In this study, different lactose grades were characterized by thermal, solid state, physical and mechanical properties and later evaluated using principal component analysis (PCA) to assess the inter-relationships among some of these properties. The lactose grades were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), moisture sorption/desorption isotherms, particle size distribution; the flow was characterized by Carr Index (CI), critical orifice diameter (COD) and angle of friction. Plug mechanical strength was estimated from its diametric crushing strength. The first and second principal components (PC) captured 47.6% and 27.4% of variation in the physical and mechanical property data, respectively. The PCA plot grouped together 110 M, AL, DCL11 and DCL15 on the one side of plot which possessed superior properties for capsule formulation and these grades were selected for future formulation development studies (part II of this work). © 2015 Taylor & Francis. Source

Discover hidden collaborations