Time filter

Source Type

Torre A.V.D.L.,Nucli Universitari Of Pedralbes | Junyent F.,Nucli Universitari Of Pedralbes | Junyent F.,Rovira i Virgili University | Folch J.,Rovira i Virgili University | And 7 more authors.
Neurochemistry International | Year: 2011

In the present study we focused in the PI3K/Akt pathway which plays a key role in neuronal survival. Here we show that inhibition of PI3K/Akt by means of LY294002 induces apoptosis via a caspase-dependent and calpain-independent pathway in cerebellar granule neurons (CGNs). This finding was confirmed using zVAD-fmk, a widely caspase inhibitor that prevents apoptosis. For this purpose, we compared two models of apoptosis in CGNs, namely inhibition of PI3K/Akt, and serum potassium deprivation (S/K deprivation). In contrast to the S/K deprivation model, caspase-3 was not activated when PI3K is inhibited. Likewise, CDK5 activation was not involved in this apoptotic process, because calpain activation is responsible for the formation of CDK5/p25 neurotoxic form. However, S/K deprivation activated calpain, as it is shown by α-spectrin breakdown, and favoured the formation of CDK5/p25. Moreover, although PI3K/Akt inhibition enhanced pRbser780 phosphorylation, no increase in the expression of cell-cycle proteins, namely: cyclin D, cyclin E, CDK2 or CDK4, was detected. Furthermore, BrdU incorporation assay did not shown any increase in DNA synthesis. Likewise, PI3K/Akt inhibition increased GSK3β activity and c-Jun phosphorylation, which implicates these two pathways in this apoptotic route. Although previous reports suggest that apoptosis induced in CGNs by LY294002 and S/K deprivation causes PI3K inhibition and increases GSK3β activity and c-Jun phosphorylation activation, our results demonstrate substantial differences between them and point to a key role of GSK3β in the apoptosis induced in CGNs in the two models tested. © 2011 Elsevier B.V. All rights reserved.


Chang J.,Case Western Reserve University | Pallas M.,Nucli Universitari Of Pedralbes | Zhu X.,Case Western Reserve University | Kim H.-J.,Case Western Reserve University | And 6 more authors.
Advances in Alzheimer's Disease | Year: 2011

Current mouse models of Alzheimer's disease (AD) are restricted to the expression of AD-related pathology associated with specific mutations present in early-onset familial AD and thus represent <5% of AD cases. To date there are no mouse lines that model late-onset/age-related AD, the feature which accounts for the vast majority of cases. As such, based on current mutation-associated models, the chronology of events that lead to the disease in the aged population is difficult to establish. However, published data show that senescence-accelerated mouse (SAMP8), as a model of aging, display many features that are known to occur early in the pathogenesis of AD such as increased oxidative stress, amyloid-β alterations, and tau phosphorylation. Therefore, SAMP8 mice may be an excellent model for studying the earliest neurodegenerative changes associated with AD and provide a more encompassing picture of human disease, a syndrome triggered by a combination of age-related events. Here, the neurochemical, neuropathological, and behavioral alterations, characterized in SAMP8 mice are critically reviewed and discussed in relation to the potential use of this mouse model in the study of AD pathogenesis. © 2011 The authors and IOS Press. All rights reserved.


Pizarro J.G.,Nucli Universitari Of Pedralbes | Verdaguer E.,University of Barcelona | Ancrenaz V.,Nucli Universitari Of Pedralbes | Junyent F.,Nucli Universitari Of Pedralbes | And 4 more authors.
Neurochemical Research | Year: 2011

Resveratrol prolongs lifespan and prevent cancer formation; however, the mechanisms are not understood. Here we evaluated the cell-cycle inhibition and apoptosis of resveratrol in B65 neuroblastoma cells, and we also studied the effects of resveratrol on the mammalian silent information regulator 2 (SIRT1). Results show that resveratrol reduces cell viability and causes apoptosis at 24 h of treatment. Resveratrol partially blocked cell proliferation, and significantly increased the fraction of cells arrested in the S phase. The role of SIRT1 in cell-cycle effects mediated by resveratrol was studied through changes in the expression of SIRT1 using western blot. Exposure to resveratrol decreased SIRT1 content, concomitant with an increase in the acetylated form of sirtuin substrates p53 and NFκ-β. Treatment of B65 neuroblastoma cells with resveratrol also reduced the content of the phosphorylated form of AKT. Exposure to the SIRT1 inhibitors nicotinamide and sirtinol altered neither cell viability nor the fraction of apoptotic cells. Furthermore, when cells were exposed simultaneously to resveratrol and nicotinamide or sirtinol, no changes were observed in the fraction of apoptotic cells. Our results show that a decrease in SIRT1 content, caused by exposure to resveratrol, does not appear to be involved in cell-cycle arrest or activation of apoptosis. © 2010 Springer Science+Business Media, LLC.


Bayod S.,Nucli Universitari Of Pedralbes | Menella I.,Nucli Universitari Of Pedralbes | Sanchez-Roige S.,Autonomous University of Barcelona | Lalanza J.F.,Autonomous University of Barcelona | And 4 more authors.
Brain Research | Year: 2014

An active lifestyle involving regular exercise reduces the deleterious effects of the aging process. At the cerebral level, both synaptic plasticity and neurogenesis are modulated by exercise, although the molecular mechanisms underlying these effects are not clearly understood. In the mature nervous system, the canonical Wnt (Wnt/β-catenin) signaling pathway is implicated in neuroprotection and synaptic plasticity. Here, we examined whether the Wnt pathway could be modulated in adult male rat hippocampus by long-term moderate exercise (treadmill running) or enrichment (handling/environmental stimulation). Sedentary animals showed higher protein levels of the Wnt antagonist, Dkk-1, the lowest levels being found in the exercised group. Although there was no evidence of any changes in activation of the LRP6 receptor, the total levels of LRP6 were higher in exercised and enriched animals. Analysis of some of the components implicated in the phosphorylation of β-catenin, which leads ultimately to its proteasomal degradation, revealed higher levels and activation of Axin1 and GSK-3α/β respectively in sedentary animals. However neither different phosphorylated forms nor total β-catenin protein levels differed between the experimental groups. Higher protein levels of Axin2 and the antiapoptotic protein, Bcl-2, were found with exercise and handling, whereas the proapototic, Bax, was unaffected. Thus, our results suggest activation of the Wnt pathway not only with moderate exercise, but also with the handling of the animals. © 2013 Elsevier B.V.

Loading Nucli Universitari Of Pedralbes collaborators
Loading Nucli Universitari Of Pedralbes collaborators