Time filter

Source Type

Arnhem, Netherlands

Nuclear Research and Consultancy Group is a Dutch institute that performs nuclear research for the government and private companies. It is the most important producer of radionuclides in Europe and maintains and operates the Petten nuclear reactor.The institute also offers services to medical, chemical, oil, and gas companies. Wikipedia.

Van der Marck S.C.,Nuclear Research and Consultancy Group
Nuclear Data Sheets | Year: 2012

Recent releases of three major world nuclear reaction data libraries, ENDF/B-VII.1, JENDL-4.0, and JEFF-3.1.1, have been tested extensively using benchmark calculations. The calculations were performed with the latest release of the continuous energy Monte Carlo neutronics code MCNP, i.e. MCNP6. Three types of benchmarks were used, viz. criticality safety benchmarks, (fusion) shielding benchmarks, and reference systems for which the effective delayed neutron fraction is reported. For criticality safety, more than 2000 benchmarks from the International Handbook of Criticality Safety Benchmark Experiments were used. Benchmarks from all categories were used, ranging from low-enriched uranium, compound fuel, thermal spectrum ones (LEU-COMP-THERM), to mixed uranium-plutonium, metallic fuel, fast spectrum ones (MIX-MET-FAST). For fusion shielding many benchmarks were based on IAEA specifications for the Oktavian experiments (for Al, Co, Cr, Cu, LiF, Mn, Mo, Si, Ti, W, Zr), Fusion Neutronics Source in Japan (for Be, C, N, O, Fe, Pb), and Pulsed Sphere experiments at Lawrence Livermore National Laboratory (for 6Li, 7Li, Be, C, N, O, Mg, Al, Ti, Fe, Pb, D2O, H2O, concrete, polyethylene and teflon). The new functionality in MCNP6 to calculate the effective delayed neutron fraction was tested by comparison with more than thirty measurements in widely varying systems. Among these were measurements in the Tank Critical Assembly (TCA in Japan) and IPEN/MB-01 (Brazil), both with a thermal spectrum, two cores in Masurca (France) and three cores in the Fast Critical Assembly (FCA, Japan), all with fast spectra. The performance of the three libraries, in combination with MCNP6, is shown to be good. The results for the LEU-COMP-THERM category are on average very close to the benchmark value. Also for most other categories the results are satisfactory. Deviations from the benchmark values do occur in certain benchmark series, or in isolated cases within benchmark series. Such instances can often be related to nuclear data for specific non-fissile elements, such as C, Fe, or Gd. Indications are that the intermediate and mixed spectrum cases are less well described. The results for the shielding benchmarks are generally good, with very similar results for the three libraries in the majority of cases. Nevertheless there are, in certain cases, strong deviations between calculated and benchmark values, such as for Co and Mg. Also, the results show discrepancies at certain energies or angles for e.g. C, N, O, Mo, and W. The functionality of MCNP6 to calculate the effective delayed neutron fraction yields very good results for all three libraries. © 2012 Elsevier Inc.

Agency: Cordis | Branch: H2020 | Program: CSA | Phase: NFRP-05-2014 | Award Amount: 1.48M | Year: 2015

The coordination action SITEX-II aims at implementing in practice the activities along with the interaction modes issued by the FP7 program SITEX project (2012-2013), in view of developing an Expertise function network. This network is expected to ensure a sustainable capability of developing and coordinating joint and harmonized activities related to the independent technical expertise in the field of safety of deep geological disposal of radioactive waste. SITEX-II tasks include: the definition of the Strategic Research Agenda (SRA) based on the common R&D orientations defined by SITEX (2012-2013), the definition of the ToR for the implementation of specific topics from the SRA, and the interaction with IGD-TP and other external entities mandated to implement research on radioactive waste disposal regarding the potential setting up of an European Joint Programming on radioactive waste disposal; the production of a guidance on the technical review of the safety case at its different phases of development, fostering a common understanding on the interpretation and proper implementation of safety requirements for developing, operating and closing a geological repository and on the verification of compliance with these requirements; the development of a training module for generalist experts involved in the safety case review process, including the implementation a pilot training session; the commitment of CS in the definition of the SRA mentioned above, considering the expectations and technical questions to be considered when developing R&D for the purpose of Expertise function. Close interactions between experts conducting the review work will allow enhancing the safety culture of CS and more globally, proposing governance patterns with CS in the framework of geological disposal; the preparation of the administrative framework for a sustainable network, by addressing the legal, organisational and management aspects.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: NFRP-09-2015 | Award Amount: 11.99M | Year: 2015

The Strategic Research Agenda of the EU Sustainable Nuclear Energy Technical platform requires new large infrastructures for its successful deployment. MYRRHA has been identified as a long term supporting research facility for all ESNII systems and as such put in the high-priority list of ESFRI. The goal of MYRTE is to perform the necessary research in order to demonstrate the feasibility of transmutation of high-level waste at industrial scale through the development of the MYRRHA research facility. Within MYRRHA as a large research facility, the demonstration of the technological performance of transmutation will be combined with the use for the production of radio-isotopes and as a material testing for nuclear fission and fusion applications. Numerical studies and experimental facilities are foreseen to reach this goal. Besides coordination, international collaboration and dissemination activities, the MYRTE proposal contains 5 technical work packages. The first and largest work-package is devoted to the realisation of the injector part of the MYRRHA accelerator to demonstrate the feasibility and required reliability of this non-semi-conducting part of the accelerator. The second work-package addresses the main outstanding technical issues in thermal hydraulics by numerical simulations and experimental validation. Pool thermal hydraulics and thermal hydraulics of the fuel assembly will be the focus of this WP. In the WP on LBE Chemistry, the evaporation from LBE, capture and deposition of Po and fission products will be studied in detail to complement the safety report. A small dedicated WP on experimental reactor physics is also foreseen to allow carrying out the necessary supplementary experiments at the GUINEVERE-facility to address the questions of the safety authorities. In a last WP, advanced studies on Americium-bearing oxide fuel are carried out to demonstrate the capability of developing minor actinide fuel for transmutation.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: NFRP-06-2014 | Award Amount: 5.95M | Year: 2015

The HORIZON 2020 EURATOM Collaborative Project Cement-based materials, properties, evolution, barrier functions (Cebama) is developed with the overall objective to support implementation of geological disposal of nuclear waste by improving the knowledge base for the Safety Case. Cement-based materials are highly relevant in this context, being used as waste forms, liners and structural components or sealing materials in different types of host rocks and disposal concepts. Specific objectives of Cebama are (i) experimental studies of interface processes between cement based materials and host rocks or bentonite, and assessing the specific impact on transport properties, (ii) quantifying radionuclide retention under high pH cement conditions, and (iii) developing comprehensive modeling approaches. Modeling will support interpretation of results and prediction of the long-term evolution of key transport characteristics such as porosity, permeability and diffusion parameters especially in the interface between cement based materials and the engineered and natural barriers. Further objectives cover dissemination of results to scientific and non-scientific stakeholders as well as training and education of young professionals for carrying over the expertise into future implementation programms. To a large extent, the experimental and modelling work will be part of PhD theses, aiming at high scientific-technical impact and quality with respect to peer-reviewed publications. The 4 years project is implemented by a consortium of 27 partners consisting of large Research Institutions, Universities, one TSO and one SME from 9 EURATOM Signatory States, Switzerland and Japan. National Waste Management Organizations support Cebama by co-developing the work plan, participation in the End-User Group, granting co-funding to some beneficiaries, and providing for knowledge and information transfer.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: NFRP-06-2014 | Award Amount: 9.66M | Year: 2015

The Modern2020 project aims at providing the means for developing and implementing an effective and efficient repository operational monitoring programme, taking into account the requirements of specific national programmes. The work allows advanced national radioactive waste disposal programmes to design monitoring systems suitable for deployment when repositories start operating in the next decade and supports less developed programmes and other stakeholders by illustrating how the national context can be taken into account in designing dedicated monitoring programmes tailored to their national needs. The work is established to understand what should be monitored within the frame of the wider safety cases and to provide methodology on how monitoring information can be used to support decision making and to plan for responding to monitoring results. Research and development work aims to improve and develop innovative repository monitoring techniques (wireless data transmission, alternative power supply sources, new sensors, geophysical methods) from the proof of feasibility stage to the technology development and demonstration phase. Innovative technical solutions facilitate the integration and flexibility of required monitoring components to ease the final implementation and adaptation of the monitoring system. Full-scale in-situ demonstrations of innovative monitoring techniques will further enhance the knowledge on the operational implementation of specific disposal monitoring and will demonstrate the performance of the state-of-the-art, the innovative techniques and their comparison with conventional ones. Finally, Modern2020 has the ambition to effectively engage local citizen stakeholders in the R&D monitoring activity by involving them at an early stage in a repository development programme in order to integrate their concerns and expectations into monitoring programmes.

Discover hidden collaborations