Time filter

Source Type

Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: Fission-2008-1.1.2 | Award Amount: 5.11M | Year: 2009

The MoDeRn project aims at providing a reference framework for the development and possible implementation of monitoring activities and associated stakeholder engagement during relevant phases of the radioactive waste disposal process, i.e. during site characterisation, construction, operation and staged closure, as well as a post-closure institutional control phase. Monitoring provides operators and other stakeholders with in-situ data on repository evolutions, to contribute to operational safety, to help manage construction, operation and/or closure activities, and may allow for a comparison with prior safety assessments. It thus provides information to inform necessary decisions. If, in addition, monitoring activities respond to stakeholder needs and provide them with understandable results, they will contribute to transparency and possibly to stakeholder confidence in the disposal process. The project is structured into six work packages (WPs). The first four WPs are dedicated to (i) analyze key objectives and propose viable strategies, based on both technical and stakeholder considerations; to (ii) establish the state of the art and provide technical developments to match specific repository requirements; to (iii) conduct in-situ monitoring demonstration experiments using innovative techniques; and to (iv) conduct a case study of monitoring and its integration into staged disposal, including specific scenarii analysis aimed at providing guidance on how to handle and communicate monitoring results, in particular when these provide unexpected information. In order to provide a shared international view on how monitoring can be developed within a given national context, WP5 regroups key dissemination activities and WP6 will provide a reference framework integrating project results and describing feasible monitoring activities, suggesting relevant stakeholder engagement activities, and illustrating possible uses of monitoring results for decision-making.

Mobbs S.,Eden Nuclear and Environment | Shaw G.,University of Nottingham | Norris S.,Nuclear Decommissioning Authority NDA | Marang L.,Electricite de France | And 7 more authors.
Radiocarbon | Year: 2013

Radiocarbon is present in solid radioactive wastes arising from the nuclear power industry, in reactor operating wastes, and in graphite and activated metals that will arise from reactor decommissioning. Its half-life of 5730 yr, among other factors, means that 14C may be released to the biosphere from radioactive waste repositories. These releases may occur as 14C-bearing gases, especially methane, or as aqueous species, and enter the biosphere from below via natural processes or via groundwater pumped from wells. Assessment of radiation doses to humans due to such releases must take account of the major role of carbon in biological processes, requiring specific 14C assessment models to be developed. Therefore, an intercomparison of 5 14C assessment models was organized by the international collaborative forum, BIOPROTA. The intercomparison identified significantly different results for the activity concentrations in the soil, atmosphere, and plant compartments, based upon the different modeling approaches. The major source of uncertainty was related to the identification of conditions under which mixing occurs and isotopic equilibrium is established. Furthermore, while the assumed release area plays a role in determining the calculated atmospheric 14C concentrations, the openness of the plant canopy and the wind profile in and above the canopy are the key drivers. The intercomparison has aided understanding of the processes involved and helped to identify areas where further research is required to address some of the uncertainties. © 2013 by the Arizona Board of Regents on behalf of the University of Arizona. Source

Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: Fission-2008-1.1.1 | Award Amount: 11.63M | Year: 2009

The multiple barrier concept is the cornerstone of all proposed schemes for underground disposal of radioactive wastes. The concept invokes a series of barriers, both engineered and natural, between the waste and the surface. Achieving this concept is the primary objective of all disposal programmes, from site appraisal and characterisation to repository design and construction. However, the performance of the repository as a whole (waste, buffer, engineering disturbed zone, host rock), and in particular its gas transport properties, are still poorly understood. Issues still to be adequately examined that relate to understanding basic processes include: dilational versus visco-capillary flow mechanisms; long-term integrity of seals, in particular gas flow along contacts; role of the EDZ as a conduit for preferential flow; laboratory to field up-scaling. Understanding gas generation and migration is thus vital in the quantitative assessment of repositories and is the focus of the research in this proposal for an integrated, multi-disciplinary project. The FORGE proposal is for a pan-European project with links to international radioactive waste management organisations, regulators and academia, specifically designed to tackle the key research issues associated with the generation and movement of repository gasses. Of particular importance are the long-term performance of bentonite buffers, plastic clays, indurated mudrocks and crystalline formations. Further experimental data are required to reduce uncertainty relating to the quantitative treatment of gas in performance assessment. FORGE will address these issues through a series of laboratory and field-scale experiments, including the development of new methods for up-scaling allowing the optimisation of concepts through detailed scenario analysis. The FORGE partners are committed to training and CPD through a broad portfolio of training opportunities and initiatives which form a significant part of the project.

Agency: Cordis | Branch: FP7 | Program: CSA-SA | Phase: Fission-2012-1.1.2 | Award Amount: 1.42M | Year: 2013

The Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) was established in 2009. This project through a Secretariat, aims at further deepening integration and coordination of the activities of the IGD-TP participants. This project includes activities involving all committed participants (80) and beyond all interested entities through Exchange Forums. The proposed Work Packages have been set up in order to: Provide an efficient management of the IGD-TP and its operation so that the mission and objectives are achieved and the benefits from the work are widely spread, Network, structure and develop Research, Development and (RD&D) programmes and competences in countries with less advanced geological disposal programmes. Public events will be organized to foster the RD&D activities in countries with less advanced programmes are proposed, Contribute to fulfilling the requirements, including advice and expertise, laid down in the new EU Directive on the management of radioactive waste, and Develop, implement and coordinate education and training activities in geological disposal in Europe within the Terms of Reference set for the IGD-TPs Competence Maintenance, Education and Training Working Group. For the period 2013-2015 the main objective of the IGD-TP is to deploy the Joint Activities identified in the Deployment Plan (DP) with the support of the Secretariat according to the timeframes set in the Vision Document, the Strategic Research Agenda 2011 (SRA) and in the Deployment Plan (DP). IGD-TP and its Secretariat do have a programmatic role which goes far beyond FP7 projects and encompasses the coordination of RD&D activities related to geological disposal from 11 Member States (and Switzerland). The Secretariat will promote the scientific and technical quality of the Research, Development and Demonstration (RD&D) by fostering interactions between national programmes. In this dissemination function, it maintains a website where e.g. progress reports and announcements for future events are published.

Agency: Cordis | Branch: FP7 | Program: CP | Phase: Fission-2012-1.1.1 | Award Amount: 15.74M | Year: 2012

DOPAS aims to improve the adequacy and consistency regarding industrial feasibility of plugs and seals, the measurement of their characteristics, the control of their behavior over time in repository conditions and also their hydraulic performance acceptable with respect to the safety objectives. This DOPAS project addresses the design basis, reference designs and strategies to demonstrate the compliance of the reference designs to the design basis, for plugs and seals in geological disposal facilities. The project focuses on shaft seals for salt rock (German repository concept), tunnel plugs for clay rock (French and Swiss repository concepts), and tunnel plugs for crystalline rock (Czech, Finnish and Swedish repository concepts). Five different demonstration experiments are part of the project and will take place in Sweden, France, Finland, Czech Republic and Germany. They are in different state-of-development. The Swedish demonstrator will be constructed prior to start of the DOPAS project and will basically provide experience on demonstration of compliance of reference design to the design basis. German demonstrator will be installed after the DOPAS project and will focus on demonstration of suitability by performance assessment. The French, Finnish, Swedish,German and the Czech experiments will address developments in all phases of design basis, reference designs and strategies to demonstrate compliance of reference designs to design basis. The studied concepts will be developed in the DOPASs five thematic scientific/technological work packages, which each integrate the results of the individual experiments. The DOPAS project is derived from the IGD-TPs Strategic Research Agenda that points out the topic of plug and seals as a first priority issue for joint European RTD projects.

Discover hidden collaborations