Berlin, Germany
Berlin, Germany

Time filter

Source Type

The present invention is related to a method for the preparation of a polyalkoxylated nucleic acid molecule, wherein the method comprises separating the polyalkoxylated nucleic acid molecule from a mixture of nucleic acid molecules, wherein the mixture of nucleic acid molecules comprises the polyalkoxylated nucleic acid molecule and a non-polyalkoxylated nucleic acid molecule, and wherein the polyalkoxylated nucleic acid molecule is separated from the non-polyalkoxylated nucleic acid molecule by precipitating the polyalkoxylated nucleic acid molecule from the mixture.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: PHC-10-2014 | Award Amount: 5.96M | Year: 2015

The aim of the PoC-ID project is to develop new micro- and nanoelectronic-based sensing and integration concepts for advanced miniaturised in vitro diagnostic devices. The project addresses the increasing demand for rapid and ultra-sensitive point-of-care diagnostics to reduce healthcare costs and increase the quality of life with a focus on infectious diseases, one of the worlds leading causes of morbidity and death. Interdisciplinary collaboration using the technology and expertise of the consortium members will be applied to develop and test a breakthrough PoC prototype for the diagnosis of respiratory syncytial virus infections and host responses in the paediatric context. PoC-ID will enable new types of point-of-care diagnostics for virtually any type of complex liquid sample. Applications are disease diagnosis, monitoring of therapeutic responses, clinical research of pathogen-host interaction and personalised medicine. The platform technology can easily be adapted to a variety of diagnostic or biosensing purposes, such as in health/environmental monitoring or food quality testing. PoC-ID will combine the detection of both pathogens and host responses leading to more accurate diagnosis as compared to the current standard which is focused on detection of pathogens only. This novel approach will support prevention and control of pathogen spread and enable faster and more personalised patient treatment. Improved performance in terms of robustness, sensitivity and selectivity will be reached by a combination of innovative nanomembrane technology, molecular engineered capture molecules and two novel sensing concepts. Further advances will be realised in terms of usability and speed of data-analysis arising from the integration of sensors, read-out electronics and microfluidics into one user friendly point-of-care (PoC) platform. Costs of the new disposable sensors will be ultra-low at high volumes, thanks to designing into microelectronics production flows.


Anemia of chronic inflammation is the most prevalent form of anemia in hospitalized patients. A hallmark of this disease is the intracellular sequestration of iron. This is a consequence of hepcidin-induced internalization and subsequent degradation of ferroportin, the hepcidin receptor and only known iron-export protein. This study describes the characterization of novel anti-hepcidin compound NOX-H94, a structured L-oligoribonucleotide that binds human hepcidin with high affinity (Kd = 0.65 ± 0.06 nmol/L). In J774A.1 macrophages, NOX-H94 blocked hepcidin-induced ferroportin degradation and ferritin expression (half maximal inhibitory concentration = 19.8 ± 4.6 nmol/L). In an acute cynomolgus monkey model of interleukin 6 (IL-6)-induced hypoferremia, NOX-H94 inhibited serum iron reduction completely. In a subchronic model of IL-6-induced anemia, NOX-H94 inhibited the decrease in hemoglobin concentration. We conclude that NOX-H94 protects ferroportin from hepcidin-induced degradation. Therefore, this pharmacologic approach may represent an interesting treatment option for patients suffering from anemia of chronic inflammation.


Patent
Noxxon Pharma | Date: 2015-05-06

The present invention is related to an L nucleic acid that binds to an SDF-1.


Patent
Noxxon Pharma | Date: 2016-07-26

The present invention is related to a nucleic acid molecule binding to SDF-1, whereby the nucleic acid molecule influences migration of cells.


The present invention is related to a nucleic acid molecule capable of binding to SDF-1, preferably capable of inhibiting SDF-1, whereby the nucleic acid molecule is for use in a method for the treatment and/or prevention of a disease or disorder, for use in a method for the treatment of a subject suffering from a disease or disorder or being at risk of developing a disease or disorder as an adjunct therapy, or for use as a medicament for the treatment and/or prevention of a disease or disorder, whereby the disease or disorder is cancer.


Patent
Noxxon Pharma | Date: 2014-05-15

The present invention is related to a nucleic acid molecule capable of binding to MCP-I, whereby the nucleic acid molecule is for use as a medicament for the treatment and/or prevention of a chronic disease or chronic disorder, preferably selected from the group consisting of chronic respiratory disease, chronic kidney disease and systemic lupus erythematosus.


Patent
Noxxon Pharma | Date: 2014-07-06

The present invention is related to a nucleic acid molecule binding to SDF-1, whereby the nucleic acid molecule influences migration of cells.


The present invention is related to a nucleic acid molecule capable of binding to SDF-1, preferably capable of inhibiting SDF-1, whereby the nucleic acid molecule is for use in a method for the treatment and/or prevention of a disease or disorder, for use in a method for the treatment of a subject suffering from a disease or disorder or being at risk of developing a disease or disorder as an adjunct therapy, or for use as a medicament for the treatment and/or prevention of a disease or disorder, whereby the disease or disorder is cancer.


Patent
Noxxon Pharma | Date: 2016-09-01

A modified L-nucleic acid, containing an L-nucleic acid part conjugated to a non-L-nucleic acid part is described. The conjugate has extended retention time in and demonstrates a delayed elimination from an organism.

Loading Noxxon Pharma collaborators
Loading Noxxon Pharma collaborators