Bordeaux, France
Bordeaux, France

Time filter

Source Type

News Article | October 26, 2016
Site: www.eurekalert.org

A year ago, the University of Zurich conducted its first parabolic flight for test purposes from Swiss soil. Now a second aircraft is ready for lift-off to research zero gravity: Saturday, an Airbus A310 ZERO-G is set to take off from the air force base in Dübendorf equipped with scientific experiments from the Universities of Zurich, Basel, Lucerne and ETH Zurich. The aircraft will perform special maneuvers to generate weightlessness in particular zones over the Mediterranean. On these trajectories - alternating between steep climbs and descents - the earth's gravitational pull will be overcome for periods of 22 seconds at a time. Diverse experiments can be conducted on board during these brief phases. Parabolic flights are vital for research under changed gravity: They can yield fundamental insights into the role of gravity in biological or physical processes. For instance, UZH is studying how human tissue reacts to the lack of oxygen in zero gravity - a key question for space walks; Lucerne University of Applied Sciences and Arts is using electrophysical tests to research the mechanisms involved in the perception of gravity by cells; a team of chiropractors from Balgrist University Hospital is testing functional connections in the development of back disorders, which can be identified more effectively in zero gravity; and another experiment conducted by ETH Zurich is devoted to the role of gravity in phytoplankton behavior, which should help improve our understanding of one of the most important oceanic microorganisms on earth. Besides these "terrestrial" experiments, however, one is also aimed into space: The University of Basel is testing sedimentation behavior in Mars' gravity, thereby obtaining crucial data for the calibration of mathematical models with a view to reconstructing the planet's environmental history. The research flight is also attractive for the space industry: An experiment conducted by the Swiss start-up SpacePharma is testing scientific hardware designed for use on small satellites. "Thanks to these research missions, Swiss Parabolic Flights, which were initiated by UZH, have taken root in Switzerland," says Professor Oliver Ullrich from the University of Zurich. He runs the Platform for Scientific Research in Zero Gravity, which is also backed by the Swiss Space Office of the State Secretariat for Education, Research and Innovation. The flexible combination of research from universities, industrial experiments and private individuals enables the costs of the flight to be minimized for science. These research flights into zero gravity are made possible by the close collaboration between Novespace, a subsidiary of the French space agency CNES, the Swiss Air Force, the Air Force Center in Dübendorf, Swissport and the Swiss SkyLab Foundation.


Pletser V.,European Space Agency | Rouquette S.,French National Center for Space Studies | Friedrich U.,German Aerospace Center | Clervoy J.-F.,Novespace | And 3 more authors.
Advances in Space Research | Year: 2015

Aircraft parabolic flights repetitively provide up to 23 s of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the Chinese Space Station CSS. The European Space Agency (ESA), the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency) and the 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Centre) have used the Airbus A300 ZERO-G for research experiments in microgravity, and at Moon and Mars gravity levels, from 1997 until October 2014. The French company Novespace, a subsidiary of CNES, based in Bordeaux, France, is in charge of the organisation of Airbus A300 ZERO-G flights. A total of 104 parabolic flight campaigns have been organised by ESA, CNES and DLR since 1997, including 38 ESA, 34 CNES and 23 DLR microgravity campaigns, two Joint European ESA-CNES-DLR Partial-g Parabolic Flight Campaigns, and seven ESA Student campaigns. After 17 years of good and loyal services, this European workhorse for microgravity research in parabolic flights has been retired. The successor aircraft, the Airbus A310 ZERO-G, is being prepared for a first ESA-CNES-DLR cooperative campaign in Spring 2015. This paper looks back over 17 years of microgravity research in parabolic flights with the A300 ZERO-G, and introduces the new A310 ZERO-G that will be used from 2015 onwards. © 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.


Pletser V.,European Space Agency | Rouquette S.,French National Center for Space Studies | Friedrich U.,German Aerospace Center | Clervoy J.-F.,Novespace | And 2 more authors.
Proceedings of the International Astronautical Congress, IAC | Year: 2013

Aircraft parabolic flights provide repetitively short periods of reduced gravity and are used to conduct scientific and technology microgravity investigations, to test instrumentation prior to space flights and to train astronauts before a space mission. Since 1997, CNES, DLR and ESA use the Airbus A300 ZERO-G, currently the largest airplane in the world for this type of experimental research flight. This mean is managed by the French company Novespace. Since 2010, Novespace offers the possibility of flying reduced gravity levels equivalent to those on the Moon and Mars. To answer an increasing request of scientists to conduct experiments at intermediate levels of gravity (between 0 and 1 g) to better study the influence of gravity and to prepare for research and exploration during space flights and future planetary exploration missions, CNES, DLR and ESA organized two Joint European Partial-g Parabolic Flight campaigns in June 2011 and December 2012. During these two campaigns, parabolas were flown during three flights on each campaign providing micro-, Moon and Mars gravity levels with duration typically of 20s, 25s and 32s with a mixed complement of investigations in Physical and Life Sciences and in Technology. The paper will present the approach taken to organise these two campaigns and the sixteen experiments conducted in total, with some preliminary results to show the interest of this unique research tool for microgravity and partial gravity investigations.


Pletser V.,European Space Agency | Rouquette S.,French National Center for Space Studies | Friedrich U.,German Aerospace Center | Clervoy J.-F.,Novespace | And 3 more authors.
Proceedings of the International Astronautical Congress, IAC | Year: 2015

Aircraft parabolic flights repetitively provide up to 23 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the Chinese Space Station CSS. The European Space Agency (ESA), the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency) and the 'Deutsches Zentrum für Luft- und Raumfahrt e. V.' (DLR, the German Aerospace Centre) have used the Airbus A300 ZERO-G for research experiments in microgravity, and at Moon and Mars gravity levels, from 1997 until October 2014. The French company Novespace, a subsidiary of CNES, based in Bordeaux, France, is in charge of the organisation of Airbus A300 ZERO-G flights. A total of 104 parabolic flight campaigns have been organised by ESA, CNES and DLR since 1997, including 38 ESA, 34 CNES and 23 DLR microgravity campaigns, two Joint European ESA-CNES-DLR Partial-g Parabolic Flight Campaigns, and seven ESA Student campaigns. After 17 years of good and loyal services, this European workhorse for microgravity research in parabolic flights has been retired. The successor aircraft, the Airbus A310 ZERO-G, is being prepared for a first ESA-CNES-DLR cooperative campaign in Spring 2015. This paper looks back over 17 years of microgravity research in parabolic flights with the A300 ZERO-G, and attempts to give an overview of the scientific outcome of these more than 100 campaigns.


Pletser V.,European Space Agency | Rouquette S.,French National Center for Space Studies | Friedrich U.,German Aerospace Center | Clervoy J.-F.,Novespace | And 3 more authors.
Microgravity Science and Technology | Year: 2016

Aircraft parabolic flights repetitively provide up to 23 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the future Chinese Space Station. After 17 years of using the Airbus A300 ZERO-G, the French company Novespace, a subsidiary of the ’Centre National d’Etudes Spatiales’ (CNES, French Space Agency), based in Bordeaux, France, purchased a new aircraft, an Airbus A310, to perform parabolic flights for microgravity research in Europe. Since April 2015, the European Space Agency (ESA), CNES and the ‘Deutsches Zentrum für Luft- und Raumfahrt e.V.’ (DLR, the German Aerospace Center) use this new aircraft, the Airbus A310 ZERO-G, for research experiments in microgravity. The first campaign was a Cooperative campaign shared by the three agencies, followed by respectively a CNES, an ESA and a DLR campaign. This paper presents the new Airbus A310 ZERO-G and its main characteristics and interfaces for scientific experiments. The experiments conducted during the first European campaign are presented. © 2016 Springer Science+Business Media Dordrecht


Pletser V.,European Space Agency | Winter J.,European Space Agency | Duclos F.,French National Center for Space Studies | Bret-Dibat T.,French National Center for Space Studies | And 6 more authors.
Microgravity Science and Technology | Year: 2012

Aircraft parabolic flights provide repetitively short periods of reduced gravity and are used to conduct scientific and technology microgravity investigations, to test instrumentation prior to space flights and to train astronauts before a space mission. Since 1997, ESA, CNES and DLR use the Airbus A300 ZERO-G, currently the largest airplane in the world for this type of experimental research flight. This mean is managed by the French company Novespace. Since 2010, Novespace offers the possibility of flying reduced gravity levels equivalent to those on the Moon and Mars achieved repetitively for periods of more than 20 s. ESA, CNES and DLR issued an international call for experiments inviting European Scientists to submit experiment proposals to be conducted at these partial gravity levels. The scientific objectives are on one hand to obtain results at intermediate levels of gravity (between 0 and 1 g) allowing a better study of the influence of gravity, and on the other hand to give them some elements to prepare for research and exploration during space flights and future planetary exploration missions. ESA, CNES and DLR jointly organised in June 2011 the first Joint European Partial-G Parabolic Flight campaign with 13 experiments selected among 42 received proposals. Parabolas were flown during three flights providing micro-, Moon and Mars gravity levels with duration typically of 20 s, 25 s and 32 s with a mixed complement of investigations in physical and life sciences and in technology. The paper presents the approach taken to organise this campaign and the 13 selected experiments with some preliminary results are presented to show the interest of this unique research tool for microgravity and partial gravity investigations. © 2012 Springer Science+Business Media B.V.


News Article | December 14, 2016
Site: physicsworld.com

"Weightless" experiments that compare the gravitational acceleration of two different quantum objects have been performed by physicists in France. Carried out in free fall on board an aircraft undergoing a parabolic trajectory, the tests were far too insensitive to test the long-held idea that all bodies fall at the same rate (in a vacuum) in a given gravitational field. However, the research could lead to far more powerful space-based experiments and might also result in the development of new navigational aids. The universality of free fall is a consequence of the equivalence principle, which lies at the heart of Einstein's general theory of relativity. It states that inertial and gravitational mass are equal, which means that a body's mass – or indeed its internal structure – has no bearing on its acceleration in a gravitational field. Therefore two bodies with different masses or compositions will accelerate at the same rate. Universality has been tested to ever greater precision since Galileo's mythical experiment at the Leaning Tower of Pisa – and, so far, has never failed. The most precise experiment to date was carried out in 2008 by researchers at the University of Washington in Seattle, who found that universality held to one part in 1013. Physicists would like to boost precision by at least a factor of 100, since it as this level that some theories beyond the Standard Model of particle physics predict that the universality of free fall will break down. In fact, one space mission already in orbit around the Earth – the Micro-Satellite à traînée Compensée pour l'Observation du Principe d'Equivalence (Microscope), developed by the French National Centre for Space Studies (CNES) – is designed to reach a sensitivity of about 10–15 and could produce its first significant results early next year. Microscope takes advantage of the fact that orbiting satellites are in free fall towards the Earth. Therefore objects inside the satellite are themselves in free fall for far longer than any mass dropped on Earth. This means that acceleration measurements can in principle reach very high sensitivities. Microscope, like the University of Washington experiment, studies the free fall of large "classical objects". In contrast, the latest work, carried out by Philippe Bouyer and Brynle Barrett of the LP2N laboratory in Bordeaux and colleagues, uses "quantum objects". These are extremely cold clouds of two types of atom: rubidium-87 and potassium-39. Atomic systems have a number of advantages over macroscopic objects, according to Bouyer, including the fact that there is no possibility of contamination by unknown quantities of impurities. Also, spin and other quantum-mechanical properties of the atoms can be varied to see if this causes a violation of the equivalence principle. The rubidium and potassium atoms are allowed to fall under the influence of gravity. As they drop they are struck by lasers, which acting as a beam splitter for matter, causes the atoms' wave packets to split and follow two vertical paths at the same time. At the end of their trajectory, the two states interfere with one another, producing an interference fringe. Comparing the position of the fringes produced by the rubidium and potassium then allows the researchers to establish whether the two different types of atom have undergone different relative phase shifts and hence experienced very slightly different accelerations. Physicists have previously used cold-atom interferometers to investigate the universality of free fall, having achieved sensitivities of around 10–8, but these experiments were performed on the ground. As with classical tests, the ultimate aim is to go into space. Bouyer and colleagues haven't yet managed that, but have instead taken advantage of the near weightless conditions on board a specially adapted Airbus aeroplane owned by French company Novespace. The "zero-G" aircraft undergoes free fall for about 20 s at a time by climbing at an angle of around 45° and then cutting its engines just enough to cancel its air drag, so that it traces out a parabola as it accelerates downwards under gravity. The plane then drops, noses up again and traces out another free-fall parabola, repeating the cycle many times over. Bouyer and colleagues have carried out nearly 10 years of painstaking work on many parabolic flights to stabilize their complex equipment in the noisy environment of the aircraft. This allowed them to perform tests on rubidium-87. Now, the team has compared the behaviour of two different types of atom over the course of six flights last year. Barrett says that the work relies on a number of technical innovations to reduce the effects of on-board vibrations, which can reach about 0.01 g, and the aircraft's rapid rotation, which can get up to one revolution per minute during a parabola. Noting that he and his colleagues tested the universality of free fall with a modest sensitivity of just 3 ×10–4, he says that the importance of the work was in showing the suitability of their set-up for space-based tests. "The techniques we developed here could be exploited by many experiments over the next few years," he predicts. The team's next step is to carry out new tests early next year to show how single atoms could be used for "inertial" navigation, which involves continually monitoring a body's acceleration and rotation over time. Beyond that, some group members are also working to exploit the interferometer technology on a mission known as the Space-Time Explorer and QUantum Equivalence Principle Space Test (STE-QUEST). But according to Bouyer, the roughly €500m satellite will not launch until at least 2025. "It is a big, long term project," he says. The research is described in Nature Communications.


Pletser V.,Payloads and Platforms Div. | Clervoy J.-F.,Novespace | Gharib T.,Novespace | Gai F.,Novespace | And 2 more authors.
61st International Astronautical Congress 2010, IAC 2010 | Year: 2010

Aircraft parabolic flights provide repetitively up to 20 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The European Space Agency (ESA) has organized since 1984 more than fifty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 600 experiments were conducted spanning several fields in Physical Sciences and Life Sciences, namely Fluid Physics, Combustion Physics, Material Sciences, fundamental Physics and Technology tests, Human Physiology, cell and animal Biology, and technical tests of Life Sciences instrumentation. Since 1997, ESA uses the Airbus A300 'Zero G', currently the largest airplane in the world used for this type of experimental research flight and managed by the French company Novespace, a subsidiary of the French space agency CNES. From 2010 onwards, ESA and Novespace also offer the possibility of flying Martian and Moon parabolas during which reduced gravity levels equivalent to those on the Moon and Mars will be achieved repetitively for periods of more than 20 seconds. This paper presents the technical capabilities of the Airbus A300 ZERO-G aircraft used by ESA to support and conduct investigations at Moon-, Mars- and micro-gravity levels to prepare research and exploration during space flights and future planetary exploration missions. Some selected experiments performed during past ESA campaigns at 0, 1/6 an 1/3 g are presented to show the interest of this unique research tool for microgravity and partial gravity investigations.


Chavagnac C.,Astrium Space Transportation Business Unit | Gai F.,Novespace | Gharib T.,Novespace | Mora C.,Novespace
Acta Astronautica | Year: 2013

Since years Novespace and Astrium are discussing mutual interest in cooperating together when considering Novespace well established capabilities and the ongoing development of the Astrium Spaceplane and its unique features. Indeed both companies are proposing service for non-public missions which require microgravity environment especially. It relies on assets of both parties: Novespace in operating 0-G aircraft platforms for the sake of the European scientific community for decades; Astrium and its Spaceplane currently in pre-development phase. Novespace and its Airbus A300 Zero-G exhibit a unique know-how in Europe for operating scientific payload on aeronautic platform(s). Moreover Astrium is preparing the development of a safe and passenger friendly Spaceplane, taking off and landing from a standard airport runway powered by turbofans and using a rocket engine of proven design to reach 100 km altitude. The paper details the joint service offered and the added value of the partnership of Novespace and Astrium for various end-users. In addition longer duration of on-board microgravity periods and ultra high altitude features of the Astrium Spaceplane mission expand the scope of possible non-public applications which includes e.g.: Earth system science and probing of uncharted layers of Earth atmosphere on a regular basis and in various locations worldwide; Spaceflight crew training. © 2013 IAA. Published by Elsevier Ltd.


Trademark
Novespace | Date: 2014-10-10

Vehicles; apparatus for locomotion by land, air or water. Transport; travel arrangement. Education; training; entertainment; sporting and cultural activities; organization of competitions (education or entertainment).

Loading Novespace collaborators
Loading Novespace collaborators