San Jose, CA, United States
San Jose, CA, United States

Novellus Systems Inc. developed, manufactured, sold, and serviced semiconductor equipment used in the fabrication of integrated circuits. It was a supplier of chemical vapor deposition , plasma-enhanced chemical vapor deposition , physical vapor deposition , electrochemical deposition , ultraviolet thermal processing , and surface preparation equipment used in the manufacturing of semiconductors. Novellus Systems was founded in 1984 and is headquartered in San Jose, California. The company maintains engineering & manufacturing facilities in Tualatin, Oregon and San Jose, California. Also, Novellus has a component design and software development facility in Bangalore, India.In December 2011, Novellus agreed to be acquired by Lam Research for $3.3 billion. The acquisition completed in June 2012. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Methods described herein manage wafer entry into an electrolyte so that air entrapment due to initial impact of the wafer and/or wafer holder with the electrolyte is reduced and the wafer is moved in such a way that an electrolyte wetting wave front is maintained throughout immersion of the wafer also minimizing air entrapment.


Patent
Novellus Systems | Date: 2016-11-23

An apparatus for continuous simultaneous electroplating of two metals having substantially different standard electrodeposition potentials (e.g., for deposition of SnAg alloys) comprises an anode chamber for containing an anolyte comprising ions of a first, less noble metal, (e.g., tin), but not of a second, more noble, metal (e.g., silver) and an active anode; a cathode chamber for containing catholyte including ions of a first metal (e.g., tin), ions of a second, more noble, metal (e.g., silver), and the substrate; a separation structure positioned between the anode chamber and the cathode chamber, where the separation structure substantially prevents transfer of more noble metal from catholyte to the anolyte; and fluidic features and an associated controller coupled to the apparatus and configured to perform continuous electroplating, while maintaining substantially constant concentrations of plating bath components for extended periods of use.


The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet. These combined flow paths result in improved plating uniformity.


Disclosed are pre-wetting apparatus designs and methods for cleaning solid contaminants from substrates prior to through resist deposition of metal. In some embodiments, a pre-wetting apparatus includes a process chamber having a substrate holder, and at least one nozzle located directly above the wafer substrate and configured to deliver pre-wetting liquid (e.g., degassed deionized water) onto the substrate at a grazing angle of between about 5 and 45 degrees. In some embodiments the nozzle is a fan nozzle configured to deliver the liquid to the center of the substrate, such that the liquid first impacts the substrate in the vicinity of the center and then flows over the center of the substrate. In some embodiments the substrate is rotated unidirectionally or bidirectionally during pre-wetting with multiple accelerations and decelerations, which facilitate removal of contaminants.


Patent
Novellus Systems | Date: 2017-02-07

Methods of depositing a film on a substrate surface include surface mediated reactions in which a film is grown over one or more cycles of reactant adsorption and reaction. In one aspect, the method is characterized by intermittent delivery of dopant species to the film between the cycles of adsorption and reaction.


Patent
Novellus Systems | Date: 2017-03-02

The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet. These combined flow paths result in improved plating uniformity.


Described are apparatus and methods for electroplating one or more metals onto a substrate. Embodiments include electroplating apparatus configured for plating highly uniform metal layers. In specific embodiments, the apparatus includes a flow-shaping element made of an ionically resistive material and having a plurality of channels made through the flow shaping element. The channels allow for transport of the electrolyte through the flow shaping element during electroplating. The channel openings are arranged in a spiral-like pattern on the substrate-facing surface of the flow shaping element such that the center of the spiral-like pattern is offset from the center of the flow shaping element.


A substrate processing system includes a showerhead that comprises a base portion and a stem portion and that delivers precursor gas to a chamber. A collar connects the showerhead to an upper surface of the chamber. The collar includes a plurality of slots, is arranged around the stem portion of the showerhead, and directs purge gas through the plurality of slots into a region between the base portion of the showerhead and the upper surface of the chamber.


Patent
Novellus Systems | Date: 2016-09-23

A temperature controlled showerhead for chemical vapor deposition (CVD) chambers enhances heat dissipation to enable accurate temperature control with an electric heater. Heat dissipates by conduction through a showerhead stem and fluid passageway and radiation from a back plate. A temperature control system includes one or more temperature controlled showerheads in a CVD chamber with fluid passageways serially connected to a heat exchanger.


Provided are cleaning methods and systems to remove unintended metallic deposits from electroplating apparatuses using reverse current deplating techniques. Such cleaning involves positioning a cleaning (deplating) disk in an electroplating cup similar to a regular processed substrate. The front surface of the cleaning disk includes a corrosion resistant conductive material to form electrical connections to deposits on the cups surfaces. The disk is sealed in the cup and submerged into a plating solution. A reverse current is then applied to the front conductive surface of the disk to initiate deplating of the deposits. Sealing compression in the cup may change during cleaning to cause different deformation of the lip seal and to form new electrical connections to the deposits. The proposed cleaning may be applied to remove deposits formed during electroplating of alloys, in particular, tin-silver alloys widely used for semiconductor and wafer level packaging.

Loading Novellus Systems collaborators
Loading Novellus Systems collaborators