Uppsala, Sweden
Uppsala, Sweden

Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC1-PM-06-2016 | Award Amount: 23.70M | Year: 2017

A highly effective malaria vaccine against Plasmodium falciparum should help prevent half a million deaths from malaria each year. New vaccine technologies and antigen discovery approaches now make accelerated design and development of a highly effective multi-antigen multi-stage subunit vaccine feasible. Leading malariologists, vaccine researchers and product developers will here collaborate in an exciting programme of antigen discovery science linked to rapid clinical development of new vaccine candidates. Our approach tackles the toughest problems in malaria vaccine design: choice of the best antigens, attaining high immunogenicity, avoiding polymorphic antigens and increasing the durability of vaccine immunogenicity and efficacy. We take advantage of several recent advances in vaccinology and adopt some very new technologies: sequencing malaria peptides eluted from the HLA molecules, parasites expressing multiple transgenes, multi-antigen virus-like particles constructed with new bonding technologies, delayed release microcapsules, and liver-targeted immunisation with vaccine vectors. We enhance our chances of success by using a multi-stage multi-antigen approach, by optimising the magnitude and durability of well-characterised immune responses to key antigens, and using stringent infectious challenges and functional assays as established criteria for progression at each stage. The consortium comprises many of the foremost researchers in this field in Europe with leading groups in the USA, Australia and Africa. We link to EDCTP programmes and harmonise our timeline to fit with the recent roadmaps for malaria vaccine development. We include a major pharma partner and several excellent European biotech companies helping enhance Europes leading position in the commercial development of vaccines. This ambitious and exciting programme should have a high chance of success in tackling the major global health problem posed by malaria.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC1-PM-06-2016 | Award Amount: 5.76M | Year: 2017

Plasmodium vivax is the most widespread malaria and constitutes a significant proportion of human malaria cases. P. vivax accounts for 100-400 million clinical cases each year among the 2.5 billion people living at risk in Latin America, Oceania and Asia. The recently revised Malaria Vaccine Technology Roadmap to 2030 recognises the severity of P. vivax malaria and calls for a vaccine intervention to achieve 75% efficacy over two years equally weighted with P. falciparum. However, despite this global health need, efforts to develop interventions against this parasite have lagged far behind those for P. falciparum, in large part because of critical bottlenecks in the vaccine development process. These include i) lack of assays to prioritise and down-select new vaccines due to lack of an in vitro P. vivax long-term culture system, and ii) lack of easy access to a safe controlled human malaria infection (CHMI) model to provide an early indication of vaccine efficacy in humans. The Objectives of this MultiViVax proposal will address these critical bottlenecks and shift the risk curve in order to better select successful vaccine candidates against multiple lifecycle stages of P. vivax: 1. We will establish a P. vivax CHMI model in Europe for the first time to facilitate the better selection of effective vaccines and remove the current bottleneck for their early-phase clinical testing. 2. We will utilise this CHMI model to identify novel antigens associated with protective blood-stage immunity in humans by taking advantage of recent advances in immuno-screening and parasite RNASeq. 3. We will progress existing vaccines targeting the current leading antigens for both the blood- and transmission-stages along the clinical development pipeline. 4. We will develop novel transgenic parasites for use in assays in order to overcome the current bottleneck in vaccine down-selection caused by the inability to culture P. vivax parasites.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.2.3.0-1 | Award Amount: 6.97M | Year: 2013

Effectively protecting the general population from seasonal and pandemic influenza has proven to be a challenge, since influenza viruses continue to escape from and evade immunity. Current influenza vaccines fail to provide long-lasting and broad protection against multiple strains of influenza. For the development of a universal influenza vaccine, we have to do better than Nature, since even natural influenza virus infections fail to induce broad protective immunity. To induce broad-protective and long-lasting immunity an influenza vaccine should therefore be directed to conserved viral proteins or regions thereof that are insufficiently exposed upon natural infection. FLUNIVAC is a SME-targeted collaborative research project that aims to develop a candidate influenza vaccine based on recombinant MVA expressing both antibody and T-cell response-inducing proteins, ready to commence Phase I clinical trials within 4 years. We will generate recombinant MVAs that express nine conserved (regions of) influenza A virus proteins (surface proteins HA, NA, M2e, internal proteins M1, NP, NS1, and the polymerase proteins PB1, PB2, PA). These proteins are targets for both antibody and T-cell mediated immune responses, since the induction of solely one of both affords only modest protection against infection with influenza viruses of heterologous subtypes. These recombinant MVAs will be tested for their capacity to induce the desired broad-protective immune response individually and in selected combinations in vivo. In parallel, MVA-induced immune responses will be tested for their longevity and boostability as compared with those induced with adjuvanated vaccine preparations. Furthermore, the MVA platform will be optimized in terms of: i) kinetics and extent of protein-expression of the MVA vector to optimally activate the respective arms of the immune system; ii) a viable unified production process, independent of embryonated chicken eggs, will be designed and implemented.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.2.3.0-1 | Award Amount: 7.82M | Year: 2013

UNISEC brings together a European consortium of 3 University partners, 5 National Health Institutes and 4 SMEs, all with leading expertise in influenza vaccine research and development, to work on promising recently developed concepts for a universal influenza vaccine. The consortium is exceptionally strong, interdisciplinary and intersectional in nature, and encompasses a unique combination of scientific and technological expertise from lead identification to clinical trial execution. UNISEC will bring a number of vaccine concepts together into a single study in order to identify, develop and clinically test the 3 most promising leads for a universal influenza vaccine, which must (1) demonstrate adequate (universal) protection, and (2) be technically suitable for development to a marketable product. Preclinical and clinical methodologies will be developed allowing a comparative evaluation of the vaccine concepts. Head-to-head comparisons in animal models will also be performed, with the most promising concepts to then be ready for clinical assessment. Independent comparative clinical studies will be executed and carried out by 5 established Clinical Trial Site partners. The expected impact of the UNISEC work programme will be the resolution of current problems of non-uniformity in the development and evaluation of universal influenza vaccines in Europe by a unified approach using an expert and sustainable vaccine expertise network. The UNISEC results will directly contribute to a timely, longer-term, broader, more effective and cost-effective universal influenza vaccine for the prevention of annual and pandemic influenza. The success of UNISEC will be based on the leading experience of its consortium partners; the proven track record of its clinical trial site partners; and a coherent and well-defined management structure and dissemination program, underpinned by the fact that several UNISEC partners were previously part of the successful EU FLUSECURE project.


Patent
Novavax AB | Date: 2015-05-18

Fraction A of Quil A can be used together with at least one other adjuvant for the preparation of an adjuvant composition, where the included adjuvant components act synergistically to enhance level of immune response and have synergistic immunomodulating activity on the co-administered antigens or immunogens. Other adjuvants can comprise saponins, naturally occurring, synthetic or semisynthetic saponin molecules; e.g. saponins and saponin fractions from Quil A, cell wall skeleton, block polymers, TDM, lipopeptides, LPS and LPS-derivatives, Lipid A from different bacterial species and derivatives thereof, e.g., monophosphoryl lipid A, CpG variants, CT and LT or fractions thereof.


Patent
Novavax AB | Date: 2014-12-31

The invention relates to a composition comprising a mixture of at least two iscom complexes each complex comprising essentially one saponin fraction from Quillaja Saponaria Molina. The complexes may be iscom complexes or iscom matrix complexes. The invention also pertains to the use of such a mixture for the preparation of an immunomodulating pharmaceutical, and adjuvant, formulations for immunization, e.g. for production of monoclonal antibodies, and a vaccine. Kits of parts comprising at least two parts, wherein each part comprises one iscom complex or one iscom matrix complex according to the invention are also embraced.


Iscom particles can be used as an adjuvant for preparing of an antigenic composition which comprises live micro-organisms and/or killed micro-organisms and/or antigenic molecules. A composition may comprise at least one iscom particle and one or more live micro-organisms and/or killed micro-organisms and/or antigenic molecules. A kit can comprise at least one compartment containing at least one living organism and at least one compartment containing at least one iscom particle.


Iscom particles can be used as an adjuvant for preparing of an antigenic composition which comprises live micro-organisms and/or killed micro-organisms and/or antigenic molecules. A composition may comprise at least one iscom particle and one or more live micro-organisms and/or killed micro-organisms and/or antigenic molecules. A kit can comprise at least one compartment containing at least one living organism and at least one compartment containing at least one iscom particle.


Patent
Novavax AB | Date: 2016-02-26

Fraction A of Quil A can be used together with at least one other adjuvant for the preparation of an adjuvant composition, where the included adjuvant components act synergistically to enhance level of immune response and have synergistic immunomodulating activity on the co-administered antigens or immunogens. Other adjuvants can comprise saponins, naturally occurring, synthetic or semisynthetic saponin molecules; e.g. saponins and saponin fractions from Quil A, cell wall skeleton, block polymers, TDM, lipopeptides, LPS and LPS-derivatives, Lipid A from different bacterial species and derivatives thereof, e.g., monophosphoryl lipid A, CpG variants, CT and LT or fractions thereof.


Patent
Novavax AB | Date: 2014-07-29

Fraction A of Quil A can be used together with at least one other adjuvant for the preparation of an adjuvant composition, where the included adjuvant components act synergistically to enhance level of immune response and have synergistic immunomodulating activity on the co-administered antigens or immunogens. Other adjuvants can comprise saponins, naturally occurring, synthetic or semisynthetic saponin molecules; e.g. saponins and saponin fractions from Quil A, cell wall skeleton, block polymers, TDM, lipopeptides, LPS and LPS-derivatives, Lipid A from different bacterial species and derivatives thereof, e.g., monophosphoryl lipid A, CpG variants, CT and LT or fractions thereof.

Loading Novavax AB collaborators
Loading Novavax AB collaborators