Novartis Institute for BioMedical Research Inc.

Cambridge, MA, United States

Novartis Institute for BioMedical Research Inc.

Cambridge, MA, United States
Time filter
Source Type

Cheng G.,Harvard University | Cheng G.,BeiGene Co Ltd. | Liao S.,Harvard University | Wong H.K.,Harvard University | And 8 more authors.
Blood | Year: 2011

Rapid blood perfusion is critical for postimplantation survival of thick, prevascularized bioartificial tissues. Yet the mechanism by which implanted vascular networks inosculate, or anastomose, with the host vasculature has been unknown, making it difficult to develop optimized strategies for facilitating perfusion. Here we show that implanted vascular networks anastomose with host vessels through a previously unidentified process of "wrapping and tapping" between the engrafted endothelial cells (ECs) and the host vasculature. At the host-implant interface, implanted ECs first wrap around nearby host vessels and then cause basement membrane and pericyte reorganization and localized displacement of the underlying host endothelium. In this way, the implanted ECs replace segments of host vessels to divert blood flow to the developing implanted vascular network. The process is facilitated by high levels of matrix metalloproteinase-14 and matrix metalloproteinase-9 expressed by the wrapping ECs. These findings open the door to new strategies for improving perfusion of tissue grafts and may have implications for other physiologic and pathologic processes involving postnatal vasculogenesis. © 2011 by The American Society of Hematology.

Rao R.,University of Kansas | Nalluri S.,Georgia Regents University | Fiskus W.,University of Kansas | Savoie A.,Georgia Regents University | And 9 more authors.
Clinical Cancer Research | Year: 2010

Purpose: Bortezomib induces unfolded protein response (UPR) and endoplasmic reticulumstress, as well as exhibits clinical activity in patients with relapsed and refractory mantle cell lymphoma (MCL). Here, we determined the molecular basis of the improved in vitro and in vivo activity of the combination of the panhistone deacetylase inhibitor panobinostat and bortezomib againsthuman, cultured, and primary MCL cells. Experimental Design: Immunoblot analyses, reverse transcription-PCR, and immunofluorescent and electron microscopy were used to determine the effects of panobinostat on bortezomib-induced aggresome formation and endoplasmic reticulum stress in MCL cells. Results: Treatment with panobinostat induced heat shock protein 90 acetylation; depleted the levels of heat shock protein 90 client proteins, cyclin-dependent kinase 4, c-RAF, and AKT; and abrogated bortezomib-induced aggresome formation in MCL cells. Panobinostat also induced lethal UPR, associated with induction of CAAT/enhancer binding protein homologous protein (CHOP). Conversely, knockdown of CHOP attenuated panobinostat-induced cell death of MCL cells. Compared with each agent alone, cotreatment with panobinostat increased bortezomib-induced expression of CHOP and NOXA, as well as increased bortezomib-induced UPR and apoptosis of cultured and primary MCL cells. Cotreatment with panobinostat also increased bortezomib-mediated in vivo tumor growth inhibition and improved survival of mice bearing human Z138C MCL cell xenograft. Conclusion: These findings suggest that increased UPR and induction of CHOP are involved in enhanced anti-MCL activity of the combination of panobinostat and bortezomib. ©2010 AACR.

Venkannagari S.,University of Kansas | Fiskus W.,University of Kansas | Peth K.,University of Kansas | Atadja P.,Novartis Institute for Biomedical Research Inc | And 3 more authors.
Oncotarget | Year: 2012

Genetic alterations activating K-RAS and PI3K/AKT signaling are also known to induce the activity of mTOR kinase through TORC1 and TORC2 complexes in human pancreatic ductal adenocarcinoma (PDAC). Here, we determined the effects of the dual PI3K and mTOR inhibitor, NVP-BEZ235 (BEZ235), and the pan-histone deacetylase inhibitor panobinostat (PS) against human PDAC cells. Treatment with BEZ235 or PS inhibited cell cycle progression with induction of the cell cycle inhibitory proteins, p21waf1 and p27kip1. BEZ235 and PS also dose dependently induced loss of cell viability of the cultured PDAC cells, associated with depletion of phosphorylated (p) AKT, as well as of the TORC1 substrates 4EBP1 and p70S6 kinase. While inhibiting p-AKT, treatment with PS induced the levels of the pro-apoptotic proteins BIM and BAK. Co-treatment with BEZ235 and PS synergistically induced apoptosis of the cultured PDAC cells. This was accompanied by marked attenuation of the levels of p-AKT and Bcl-xL but induction of BIM. Although in vivo treatment with BEZ235 or PS reduced tumor growth, co-treatment with BEZ235 and PS was significantly more effective in controlling the xenograft growth of Panc1 PDAC cells in the nude mice. Furthermore, co-treatment with BEZ235 and PS more effectively blocked tumor growth of primary PDAC heterotransplants (possessing K-RAS mutation and AKT2 amplification) subcutaneously implanted in the nude mice than each agent alone. These findings demonstrate superior activity and support further in vivo evaluation of combined treatment with BEZ235 and PS against PDAC that possess heightened activity of RAS-RAF-ERK1/2 and PI3K-AKT-mTOR pathways. © Venkannagari et al.

Fiskus W.,University of Kansas | Rao R.,University of Kansas | Balusu R.,University of Kansas | Ganguly S.,University of Kansas | And 8 more authors.
Clinical Cancer Research | Year: 2012

Purpose: A deregulated epigenome contributes to the transformed phenotype of mantle cell lymphoma (MCL). This involves activity of the polycomb repressive complex (PRC) 2, containing three core proteins, EZH2, SUZ12, and EED, in which the SET domain of EZH2 mediates the histone methyltransferase activity. We determined the effects of 3-deazaneplanocin A (DZNep), an S - adenosylhomocysteine hydrolase inhibitor, and/or pan-histone deacetylase inhibitor panobinostat (PS) on cultured and primary MCL cells. Experimental Design: Following treatment with DZNep and/or PS, apoptosis and the levels and activity of EZH2 and PRC2 proteins in cultured and primary MCL cells were determined. Results: Treatment with DZNep depleted EZH2, SUZ12, and 3MeK27H3 in the cultured human MCL cells. DZNep also increased expression of p21, p27, and FBXO32, whereas it depleted Cyclin D1 and Cyclin E1 levels in MCL cells. In addition, DZNep treatment induced cell-cycle arrest and apoptosis in cultured and primary MCL cells. Furthermore, as compared with treatment with each agent alone, cotreatment with DZNep and PS caused greater depletion of EZH2, SUZ12, 3MeK27H3, and Cyclin D1 levels, whereas it induced greater expression of FBXO32, p16, p21, and p27. Combined treatment with DZNep and PS synergistically induced apoptosis of cultured and primary MCL cells while relatively sparing normal CD34 + cells. Cotreatment with DZNep and PS also caused significantly greater inhibition of tumor growth of JeKo-1 xenografts in NOD/SCID mice. Conclusions: These preclinical in vitro and in vivo findings show that cotreatment with DZNep and PS is an active combined epigenetic therapy worthy of further in vivo testing against MCL. ©2012 AACR.

Chen J.,Novartis Institute for BioMedical Research Inc. | Chen J.,Novartis Institute for Biomedical Research Inc. | Shen Q.,Novartis Institute for BioMedical Research Inc. | Labow M.,Novartis Institute for BioMedical Research Inc. | And 2 more authors.
Cancer Research | Year: 2011

RAS mutations occur in more than 30% of all human cancers but efforts to directly target mutant RAS signaling as a cancer therapy have yet to succeed. As alternative strategies, RAF and MEK inhibitors have been developed to block oncogenic signaling downstream of RAS. As might be expected, studies of these inhibitors have indicated that tumors with RAS or BRAF mutations display resistance RAF or MEK inhibitors. In order to better understand the mechanistic basis for this resistance, we conducted a RNAi-based screen to identify genes that mediated chemoresistance to the RAF kinase inhibitor RAF265 in a BRAF (V600E) mutant melanoma cell line that is resistant to this drug. In this way, we found that knockdown of protein kinase D3 (PRKD3) could enhance cell killing of RAF and MEK inhibitors across multiple melanoma cell lines of various genotypes and sensitivities to RAF265. PRKD3 blockade cooperated with RAF265 to prevent reactivation of the MAPK signaling pathway, interrupt cell cycle progression, trigger apoptosis, and inhibit colony formation growth. Our findings offer initial proof-of-concept that PRKD3 is a valid target to overcome drug resistance being encountered widely in the clinic with RAF or MEK inhibitors. ©2011 AACR.

Tan Y.,Harvard University | Zanoni I.,Harvard University | Zanoni I.,University of Milan Bicocca | Zanoni I.,Humanitas Clinical and Research Center | And 4 more authors.
Immunity | Year: 2015

Microbe-induced receptor trafficking has emerged as an essential means to promote innate immune signal transduction. Upon detection of bacterial lipopolysaccharides (LPS), CD14 induces an inflammatory endocytosis pathway that delivers Toll-like receptor 4 (TLR4) to endosomes. Although several regulators of CD14-dependent TLR4 endocytosis have been identified, the cargo-selection mechanism during this process remains unknown. We reveal that, in contrast to classic cytosolic interactions that promoted the endocytosis of transmembrane receptors, TLR4 was selected as cargo for inflammatory endocytosis entirely through extracellular interactions. Mechanistically, the extracellular protein MD-2 bound to and dimerized TLR4 in order to promote this endocytic event. Our analysis of LPS variants from human pathogens and gut commensals revealed a common mechanism by which bacteria prevent inflammatory endocytosis. We suggest that evasion of CD14-dependent endocytosis is an attribute that transcends the concept of pathogenesis and might be a fundamental feature of bacteria that inhabit eukaryotic hosts. © 2015 Elsevier Inc.

Fetar H.,Queen's University | Gilmour C.,Queen's University | Klinoski R.,Queen's University | Daigle D.M.,Novartis Institute for Biomedical Research Inc. | And 2 more authors.
Antimicrobial Agents and Chemotherapy | Year: 2011

A null mutation in the mexS gene of Pseudomonas aeruginosa yielded an increased level of expression of a 3-gene operon containing a gene, xenB, whose product is highly homologous to a xenobiotic reductase in Pseudomonas fluorescens shown previously to remove nitro groups from trinitrotoluene and nitroglycerin (D. S. Blehert, B. G. Fox, and G. H. Chambliss, J. Bacteriol. 181:6254, 1999). This expression, which paralleled an increase in mexEF-oprN expression in the same mutant, was, like mexEF-oprN, dependent on the MexT LysR family positive regulator previously implicated in mexEF-oprN expression. As nitration is a well-known result of nitrosative stress, a role for xenB (and the coregulated mexEF-oprN) in a nitrosative stress response was hypothesized and tested. Using s-nitrosoglutathione (GSNO) as a source of nitrosative stress, the expression of xenB and mexEF-oprN was shown to be GSNO inducible, although in the case of xenB, this was seen only for a mutant lacking MexEF-OprN. In both instances, this GSNO-inducible expression was dependent upon MexT. Chloramphenicol, a nitroaromatic antimicrobial that is a substrate for MexEF-OprN, was shown to induce mexEF-oprN but not xenB, again dependent upon the MexT regulator, possibly because it resembles a nitrosated nitrosative stress product accommodated by MexEF-OprN. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

Bushee J.L.,Novartis Institute for Biomedical Research Inc. | Argikar U.A.,Novartis Institute for Biomedical Research Inc.
Rapid Communications in Mass Spectrometry | Year: 2011

Recent advancements in mass spectrometry including data-dependent scanning and high-resolution mass spectrometry have aided metabolite profiling for non-radiolabeled xenobiotics. However, narrowing down a site of metabolism is often limited by the quality of the collision-induced dissociation (CID)-based precursor ion fragmentation. An alternative dissociation technique, higher energy collisional dissociation (HCD), enriches compound fragmentation and yields 'triple-quadrupole-like fragmentation'. Applying HCD along with CID and data-dependent scanning could enhance structural elucidation for small molecules. Liquid chromatography/multi-stage mass spectrometry (LC/MS n) experiments with CID and HCD fragmentation were carried out for commercially available compounds on a hybrid linear ion trap orbital trap mass spectrometer equipped with accurate mass measurement capability. The developed method included stepped normalized collision energy (SNCE) parameters to enhance MS fragmentation without tuning for individual compounds. All the evaluated compounds demonstrated improved fragmentation under HCD as compared with CID. The results suggest that an LC/MSn method that incorporated both SNCE HCD- and CID-enabled precursor ion fragmentation afforded comprehensive structural information for the compounds under investigation. A dual collision cell approach was remarkably better than one with only CID MSn in an orbital trap. It is evident that such an acquisition method can augment the identification of unknown metabolites in drug discovery by improving fragmentation efficiency of both the parent compound and its putative metabolite(s). Copyright © 2011 John Wiley & Sons, Ltd.

Rao R.,University of Kansas | Balusu R.,University of Kansas | Fiskus W.,University of Kansas | Mudunuru U.,University of Kansas | And 7 more authors.
Molecular Cancer Therapeutics | Year: 2012

Histone deacetylase (HDAC) inhibitors (HDI) induce endoplasmic reticulum (ER) stress and apoptosis, while promoting autophagy, which promotes cancer cell survival when apoptosis is compromised. Here, we determined the in vitro and in vivo activity of the combination of the pan-HDI panobinostat and the autophagy inhibitor chloroquine against human estrogen/progesterone receptor and HER2 (triple)-negative breast cancer (TNBC) cells. Treatment of MB-231 and SUM159PT cells with panobinostat disrupted the hsp90/histone deacetylase 6/HSF1/p97 complex, resulting in the upregulation of hsp. This was accompanied by the induction of enhanced autophagic flux as evidenced by increased expression of LC3B-II and the degradation of the autophagic substrate p62. Treatment with panobinostat also induced the accumulation and colocalization of p62 with LC3B-II in cytosolic foci as evidenced by immunofluorescent confocal microscopy. Inhibition of panobinostat-induced autophagic flux by chloroquine markedly induced the accumulation of polyubiquitylated proteins and p62, caused synergistic cell death of MB-231 and SUM159PT cells, and inhibited mammosphere formation in MB-231 cells, compared with treatment with each agent alone. Finally, in mouse mammary fat pad xenografts of MB-231 cells, a tumor size-dependent induction of heat shock response, ER stress and autophagy were observed. Cotreatment with panobinostat and chloroquine resulted in reduced tumor burden and increased the survival of MB-231 breast cancer xenografts. Collectively, our findings show that cotreatment with an autophagy inhibitor and pan-HDI, for example, chloroquine and panobinostat results in accumulation of toxic polyubiquitylated proteins, exerts superior inhibitory effects on TNBC cell growth, and increases the survival of TNBC xenografts. ©2012 AACR.

Chau M.D.L.,Novartis Institute for Biomedical Research Inc. | Gao J.,Novartis Institute for Biomedical Research Inc. | Yang Q.,Novartis Institute for Biomedical Research Inc. | Wu Z.,Novartis Institute for Biomedical Research Inc. | Gromada J.,Novartis Institute for Biomedical Research Inc.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2010

Fibroblast growth factor 21 (FGF21) has been identified as a potent metabolic regulator. Administration of recombinant FGF21 protein to rodents and rhesus monkeys with diet-induced or genetic obesity and diabetes exerts strong antihyperglycemic and triglyceride-lowering effects and reduction of body weight. Despite the importance of FGF21 in the regulation of glucose, lipid, and energy homeostasis, the mechanisms by which FGF21 functions as a metabolic regulator remain largely unknown. Here we demonstrate that FGF21 regulates energy homeostasis in adipocytes through activation of AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1), resulting in enhanced mitochondrial oxidative function. AMPK phosphorylation levels were increased by FGF21 treatment in adipocytes as well as in white adipose tissue from ob/ob mice. FGF21 treatment increased cellular NAD+ levels, leading to activation of SIRT1 and deacetylation of its downstream targets, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and histone 3. Activation of AMPK and SIRT1 by FGF21 in adipocytes enhanced mitochondrial oxidative capacity as demonstrated by increases in oxygen consumption, citrate synthase activity, and induction of key metabolic genes. The effects of FGF21 on mitochondrial function require serine/threonine kinase 11 (STK11/LKB1), which activates AMPK. Inhibition of AMPK, SIRT1, and PGC-1α activities attenuated the effects of FGF21 on oxygen consumption and gene expression, indicating that FGF21 regulates mitochondrial activity and enhances oxidative capacity through an AMPK-SIRT1-PGC1α-dependent mechanism in adipocytes.

Loading Novartis Institute for BioMedical Research Inc. collaborators
Loading Novartis Institute for BioMedical Research Inc. collaborators