Time filter

Source Type

NJ, United States

Wilkinson R.A.,Montana State University | Pincus S.H.,Research Institute for Children | Pincus S.H.,Health Science Center | Shepard J.B.,Montana State University | And 4 more authors.
Antimicrobial Agents and Chemotherapy | Year: 2011

The G-protein-coupled receptor CXCR4 acts as a coreceptor for human immunodeficiency virus type 1 (HIV-1) infection, as well as being involved in signaling cell migration and proliferation. Compounds that block CXCR4 interactions have potential uses as HIV entry inhibitors to complement drugs such as maraviroc that block the alternate coreceptor CCR5 or in cancer therapy. The peptide T140, which contains five arginine residues, is the most potent antagonist of CXCR4 developed to date. In a search for nonpeptide CXCR4 ligands that could inhibit HIV entry, three series of compounds were synthesized from 12 linear and branched polyamines with 2, 3, 4, 6, or 8 amino groups, which were substituted to produce the corresponding guanidines, biguanides, or phenylguanides. The resulting compounds were tested for their ability to compete with T140 for binding to the human CXCR4 receptor expressed on mammalian cells. The most effective compounds bound CXCR4 with a 50% inhibitory concentration of 200 nM, and all of the compounds had very low cytotoxicity. Two series of compounds were then tested for their ability to inhibit the infection of TZM-bl cells with X4 and R5 strains of HIV-1. Spermine phenylguanide and spermidine phenylguanide inhibited infection by X4 strains, but not by R5 strains, at low micromolar concentrations. These results support further investigation and development of these compounds as HIV entry inhibitors. Copyright © 2011, American Society for Microbiology. All Rights Reserved. Source

Wilkinson R.A.,Montana State University | Pincus S.H.,Research Institute for Children | Pincus S.H.,Health Science Center | Song K.,Research Institute for Children | And 4 more authors.
Bioorganic and Medicinal Chemistry Letters | Year: 2013

The G-protein coupled receptor CXCR4 is a co-receptor for HIV-1 infection and is involved in signaling cell migration and proliferation. In a previous study of non-peptide, guanide-based CXCR4-binding compounds, spermine and spermidine phenylguanides inhibited HIV-1 entry at low micromolar concentrations. Subsequently, crystal structures of CXCR4 were used to dock a series of naphthylguanide derivatives of the polyamines spermidine and spermine. Synthesis and evaluation of the naphthylguanide compounds identified our best compound, spermine tris-1-naphthylguanide, which bound CXCR4 with an IC 50 of 40 nM and inhibited the infection of TZM-bl cells with X4, but not R5, strains of HIV-1 with an IC50 of 50-100 nM. © 2013 Elsevier Ltd. All rights reserved. Source

An inexpensive, easily available, and convenient method of treating or preventing a virus infection is provided. The present invention relates to a method for the treatment or prevention of virus infections using polybiguanide-based compounds administering a therapeutically effective amount of a compound or a pharmaceutically acceptable salt thereof The invention relies on the unique biochemical reaction in which polybiguanide-based compounds interfere with the spread of virus within or between organisms. The compositions and formulations described in the present invention are effective means to reduce the infectivity of the human immunodeficiency virus type 1 (HIV-1), and human herpes simplex viruses, and also to kill the causative organisms of many other sexually transmitted diseases (STDs).

Lozenski K.,Drexel University | Kish-Catalone T.,DeSales University | Pirrone V.,Drexel University | Rando R.F.,Novaflux Biosciences Inc. | And 4 more authors.
Journal of Biomedicine and Biotechnology | Year: 2011

Vaginal microbicides that reduce or eliminate the risk of HIV-1 sexual transmission must do so safely without adversely affecting the integrity of the cervicovaginal epithelium. The present studies were performed to assess the safety of the biguanide-based antiviral compound NB325 in a formulation suitable for topical application. Experiments were performed using a mouse model of cervicovaginal microbicide application, which was previously shown to be predictive of topical agent toxicity revealed in microbicide clinical trials. Mice were exposed vaginally to unformulated NB325 or NB325 formulated in the hydroxyethyl cellulose universal placebo. Following exposures to formulated 1 NB325 for 10min to 24h, the vaginal and cervical epithelia were generally intact, although some areas of minimal vaginal epithelial damage were noted. Although formulated NB325 appeared generally safe for application in these studies, the low but observable level of toxicity suggests the need for improvements in the compound and/or formulation. Copyright © 2011 Karissa Lozenski et al. Source

Thakkar N.,Drexel University | Pirrone V.,Drexel University | Passic S.,Drexel University | Keogan S.,Drexel University | And 7 more authors.
Antimicrobial Agents and Chemotherapy | Year: 2010

We previously demonstrated that the biguanide-based compound NB325 inhibits human immunodeficiency virus type 1 (HIV-1) infection by interacting with the CXCR4 viral coreceptor. This interaction also appeared to be persistent, since HIV-1 infection was inhibited even when the virus was introduced subsequent to the removal of NB325 from the cell culture medium. The present studies were conducted to determine the extent and mechanism of this prolonged antiviral activity. Persistent inhibition of HIV-1 infection by NB325 was concentration dependent and was apparent up to 8 h after removal of the compound. Flow cytometric analyses of stimulated CD4 + T lymphocytes exposed to NB325 demonstrated concentration-dependent reductions in CXCR4 extracellular loop 2 epitope recognition that were maintained up to 24 h after removal of the compound. CXCL12-induced chemotaxis was also persistently inhibited following pre-exposure to NB325. These results demonstrate that persistent inhibition of X4 HIV-1 infection by NB325 involves extended perturbation of the viral coreceptor CXCR4. Copyright © 2010, American Society for Microbiology. All Rights Reserved. Source

Discover hidden collaborations