Time filter

Source Type

Not Found, France

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-15-2015 | Award Amount: 6.34M | Year: 2015

Stroke is the second leading cause of death in the world population. When not fatal, stroke often results in disability, due to motor and cognitive impairments, and secondary health problems affecting not only patients but also their families. Building on emerging preclinical and pilot clinical evidences, RESSTORE will focus on the clinical assessment of regenerative cell therapy to improve stroke recovery and patients quality of life. RESSTORE European multicentre randomised phase IIb will explore, for the first time, the efficacy (functional recovery) and safety of intravenous infusion of allogenic adipose tissue derived mesenchymal stem cells (ADMSCs) in 400 stroke patients. Therapeutic effects of ADMSCs will be assessed and monitored in patients using clinical rating scales, multimodal MRI and novel blood biomarkers. Additionally, the societal value and cost-effectiveness of ADMSCs-based regenerative therapy will be evaluated through health economics and predictive in silico simulations. Complementary ancillary animal studies will support the clinical trial by defining i) if the treatment response can be further enhanced by intensive rehabilitation, ii) the contribution of co-morbidities and iii) the mechanism(s) underlying the therapeutic effect. The European regenerative therapy capacities (France, Spain, Finland, United Kingdom and Czech Republic), developed in RESSTORE will cover the full value chain in the field (large scale GMP cell production, clinical testing, biomarkers discovery, understanding of the restoring mechanisms, modelling, biobanking, economic studies, exploitation and communication plan). RESSTORE will thus surely contribute, together with the workforce trained in the context of the programme, to improve its public and private (SME) competitiveness and increase the attractiveness of Europe as a reference location to develop and clinically assess new innovative therapeutic options for brain diseases.

Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2012.2.1.2-1 | Award Amount: 3.93M | Year: 2012

Lung transplantation (LT) is the standard of care for selected patients with chronic respiratory failure. Chronic lung allograft dysfunction (CLAD) (i.e. Bronchiolitis obliterans syndrome (BOS) and Restrictive Allograft Syndrome (RAS)) represents a major health risk for LT recipients, requiring the use of heavy treatments and possible retransplantation. Observed in almost 50% of patients after 5 years post LT, it is currently impossible to predict the appearance of CLAD before the onset of first symptoms. This project aims to develop the SysCLAD model which will allow to predict, within the 1st year post LT, the recipients at risk of developing CLAD by 3 years post LT. Building upon available data from the cohort of lung transplantation (COLT, recruited since mid-2009), this project will integrate new LT recipients to form the European cohort of lung transplantation (ECOLT). The SysCLAD prediction tool will be based on a mathematical model developed through a system biology approach integrating both clinical and biological data collected from a total of 400 LT recipients. The model will be validated on the first 200 LT recipients (3 years follow-up at project start) and refined using the new set of 200 LT data with 3 years follow-up by 2014. The aim is to identify and validate the signature of CLAD both at the clinical and molecular levels to allow for an early recognition and specific interventions in patients at risk of CLAD. The implementation of the model is expected to significantly improve the cost-effectiveness of post-LT treatments, limit the risk of graft rejection in LT recipients and, ultimately lead to an improved quality of life and a prolonged life expectancy of patients following LT. Finally, the SysCLAD model holds further great promises in the context of other chronic bronchial inflammatory diseases of major incidence such as severe asthma and Chronic Obstructive Pulmonary Disease (COPD) to predict decline in lung function.

Discover hidden collaborations