Rehovot, Israel
Rehovot, Israel

Nova Measuring Instruments is a publicly traded company, headquartered in Israel, that designs, develops and produces monitoring and measurement systems for the semiconductor manufacturing industry. Shares of the company are traded on the NASDAQ Global Market and on the Tel Aviv Stock Exchange. Wikipedia.


Time filter

Source Type

Patent
Nova Measuring Instruments | Date: 2016-10-05

A control system and method are provided for use in managing optical measurements on target structures. The control system comprises: data input utility for receiving input data indicative of a size of a target structure to be measured and input data indicative of illumination and collection channels of an optical measurement system; data processing utility for analyzing the input data, and an interplay of Point Spread Functions (PSFs) of the illumination and collection channels, and determining data indicative of optional tailoring of apertures to be used in the optical measurement system for optimizing ensquared energy for measurements on the given target structure, the optimal tailoring composing at least one of the following: an optimal ratio between numerical apertures of the illumination and collection channels; and an optimal orientation offset of physical apertures in the illumination and collection channels.


Patent
Nova Measuring Instruments | Date: 2015-02-16

A sample comprising an overlay target is presented. The overlay target comprises at least one pair of patterned structures, the patterned structures of the pair being accommodated in respectively bottom and top layers of the sample with a certain vertical distance h between them, wherein a pattern in at least one of the patterned structures has at least one pattern parameter optimized for a predetermined optical overlay measurement scheme with a predetermined wavelength range.


Grant
Agency: Cordis | Branch: H2020 | Program: ECSEL-IA | Phase: ECSEL-02-2014 | Award Amount: 139.30M | Year: 2015

The proposed pilot line project WAYTOGO FAST objective is to leverage Europe leadership in Fully Depleted Silicon on Insulator technology (FDSOI) so as to compete in leading edge technology at node 14nm and beyond preparing as well the following node transistor architecture. Europe is at the root of this breakthrough technology in More Moore law. The project aims at establishing a distributed pilot line between 2 companies: - Soitec for the fabrication of advanced engineered substrates (UTBB: Ultra Thin Body and BOx (buried oxide)) without and with strained silicon top film. - STMicroelectronics for the development and industrialization of state of the art FDSOI technology platform at 14nm and beyond with an industry competitive Power-Performance-Area-Cost (PPAC) trade-off. The project represents the first phase of a 2 phase program aiming at establishing a 10nm FDSOI technology for 2018-19. A strong added value network is created across this project to enhance a competitive European value chain on a European breakthrough and prepare next big wave of electronic devices. The consortium gathers a large group of partners: academics/institutes, equipment and substrate providers, semiconductor companies, a foundry, EDA providers, IP providers, fabless design houses, and a system manufacturer. E&M will contribute to the objective of installing a pilot line capable of manufacturing both advanced SOI substrates and FDSOI CMOS integrated circuits at 14nm and beyond. Design houses and electronics system manufacturer will provide demonstrator and enabling IP, to spread the FDSOI technology and establish it as a standard in term of leading edge energy efficient CMOS technology for a wide range of applications battery operated (consumer , healthcare, Internet of things) or not. Close collaboration between the design activities and the technology definition will tailor the PPAC trade-off of the next generation of technology to the applications needs.


Grant
Agency: Cordis | Branch: H2020 | Program: ECSEL-IA | Phase: ECSEL-15-2015 | Award Amount: 150.05M | Year: 2016

The TAKE5 project is the next in a chain of thematically connected ENIAC JU KET pilot line projects which are associated with 450mm/300mm development for the 10nm technology node and the ECSEL JU project SeNaTe aiming at the 7nm technology node. The main objective of the TAKE5 project is the demonstration of 5nm patterning in line with the industry needs and the ITRS roadmap in the Advanced Patterning Center at the imec pilot line using innovative design and technology co-optimization, layout and device architecture exploration, and comprising demonstration of a lithographic platform for EUV technology, advanced process and holistic metrology platforms and new materials. A lithography scanner will be developed based on EUV technology to achieve the 5nm module patterning specification. Metrology platforms need to be qualified for 5nm patterning of 1D, 2D and 3D geometries with the appropriate precision and accuracy. For the 5nm technology modules new materials will need to be introduced. Introduction of these new materials brings challenges for all involved deposition processes and the related equipment set. Next to new deposition processes also the interaction of the involved materials with subsequent etch steps will be studied. The project will be dedicated to find the best options for patterning. The project relates to the ECSEL work program topic Process technologies More Moore. It addresses and targets as set out in the MASP at the discovery of new Semiconductor Process, Equipment and Materials solutions for advanced CMOS processes that enable the nano-structuring of electronic devices with 5nm resolution in high-volume manufacturing and fast prototyping. The project touches the core of the continuation of Moores law which has celebrated its 50th anniversary and covers all aspects of 5nm patterning development.


Grant
Agency: Cordis | Branch: H2020 | Program: ECSEL-IA | Phase: ECSEL-02-2014 | Award Amount: 181.08M | Year: 2015

The SeNaTe project is the next in a chain of thematically connected ENIAC JU KET pilot line projects which are associated with 450mm/300mm development for the 12nm and 10nm technology nodes. The main objective is the demonstration of the 7nm IC technology integration in line with the industry needs and the ITRS roadmap on real devices in the Advanced Patterning Center at imec using innovative device architecture and comprising demonstration of a lithographic platform for EUV and immersion technology, advanced process and holistic metrology platforms, new materials and mask infrastructure. A lithography scanner will be developed based on EUV technology to achieve the 7nm module patterning specification. Metrology platforms need to be qualified for N7s 1D, 2D and 3D geometries with the appropriate precision and accuracy. For the 7nm technology modules a large number of new materials will need to be introduced. The introduction of these new materials brings challenges for all involved processes and the related equipment set. Next to new deposition processes also the interaction of the involved materials with subsequent etch, clean and planarization steps will be studied. Major European stakeholders in EUV mask development will collaboratively work together on a number of key remaining EUV mask issues. The first two years of the project will be dedicated to find the best options for patterning, device performance, and integration. In the last year a full N7 integration with electrical measurements will be performed to enable the validation of the 7nm process options for a High Volume Manufacturing. The SeNaTe project relates to the ECSEL work program topic Process technologies More Moore. It addresses and targets as set out in the MASP at the discovery of new Semiconductor Process, Equipment and Materials solutions for advanced CMOS processes that enable the nano-structuring of electronic devices with 7nm resolution in high-volume manufacturing and fast prototyping.


Grant
Agency: Cordis | Branch: H2020 | Program: ECSEL-RIA | Phase: ECSEL-06-2015 | Award Amount: 23.11M | Year: 2016

The objective of the 3DAM project is to develop a new generation of metrology and characterization tools and methodologies enabling the development of the next semiconductor technology nodes. As nano-electronics technology is moving beyond the boundaries of (strained) silicon in planar or finFETs, new 3D device architectures and new materials bring major metrology and characterization challenges which cannot be met by pushing the present techniques to their limits. 3DAM will be a path-finding project which supports and complements several existing and future ECSEL pilot-line projects and is linked to the MASP area 7.1 (subsection More Moore). Innovative demonstrators and methodologies will be built and evaluated within the themes of metrology and characterization of 3D device architectures and new materials, across the full IC manufacturing cycle from Front to Back-End-Of-Line. 3D structural metrology and defect analysis techniques will be developed and correlated to address challenges around 3D CD, strain and crystal defects at the nm scale. 3D compositional analysis and electrical properties will be investigated with special attention to interfaces, alloys and 2D materials. The project will develop new workflows combining different technologies for more reliable and faster results; fit for use in future semiconductor processes. The consortium includes major European semiconductor equipment companies in the area of metrology and characterization. The link to future needs of the industry, as well as critical evaluation of concepts and demonstrators, is ensured by the participation of IMEC and LETI. The project will directly increase the competitiveness of the strong Europe-based semiconductor Equipment industry. Closely connected European IC manufacturers will benefit by accelerated R&D and process ramp-up. The project will generate technologies essential for future semiconductor processes and for the applications enabled by the new technology nodes.


Patent
Nova Measuring Instruments | Date: 2016-04-07

Alignment of layers during manufacture of a multi-layer sample is controlled by applying optical measurements to a measurement site in the sample. The measurement site includes two diffractive structures located one above the other in two different layers, respectively. The optical measurements include at least two measurements with different polarization states of incident light, each measurement including illuminating the measurement site so as to illuminate one of the diffractive structures through the other. The diffraction properties of the measurement site are indicative of a lateral shift between the diffractive structures. The diffraction properties detected are analyzed for the different polarization states of the incident light to determine an existing lateral shift between the layers.


Patent
Nova Measuring Instruments | Date: 2016-02-23

A system and method are presented for use in inspection of patterned structures. The system comprises: data input utility for receiving first type of data indicative of image data on at least a part of the patterned structure, and data processing and analyzing utility configured and operable for analyzing the image data, and determining a geometrical model for at least one feature of a pattern in said structure, and using said geometrical model for determining an optical model for second type of data indicative of optical measurements on a patterned structure.


An article is presented configured for controlling a multiple patterning process, such as a spacer self-aligned multiple patterning, to produce a target pattern. The article comprises a test site carrying a test structure comprising at least one pair of gratings, wherein first and second gratings of the pair are in the form of first and second patterns of alternating features and spaces and differ from the target pattern by respectively different first and second values which are selected to provide together a total difference such that a differential optical response from the test structure is indicative of a pitch walking effect.


Patent
Nova Measuring Instruments | Date: 2015-04-12

A measurement system for use in measuring parameters of a patterned sample is presented. The system comprises: a broadband light source; an optical system configured as an interferometric system; a detection unit; and a control unit. The interferometric system defines illumination and detection channels having a sample arm and a reference arm comprising a reference reflector, and is configured for inducing an optical path difference between the sample and reference arms; the detection unit comprises a configured and operable for detecting a combined light beam formed by a light beam reflected from said reflector and a light beam propagating from a samples support, and generating measured data indicative of spectral interference pattern formed by at least two spectral interference signatures. The control unit is configured and operable for receiving the measured data and applying a model-based processing to the spectral interference pattern for determining one or more parameters of the pattern in the sample.

Loading Nova Measuring Instruments collaborators
Loading Nova Measuring Instruments collaborators