Time filter

Source Type

Mysterud A.,University of Oslo | Easterday W.R.,University of Oslo | Stigum V.M.,University of Oslo | Aas A.B.,University of Oslo | And 3 more authors.
Nature Communications

Global environmental changes are causing Lyme disease to emerge in Europe. The life cycle of Ixodes ricinus, the tick vector of Lyme disease, involves an ontogenetic niche shift, from the larval and nymphal stages utilizing a wide range of hosts, picking up the pathogens causing Lyme disease from small vertebrates, to the adult stage depending on larger (non-transmission) hosts, typically deer. Because of this complexity the role of different host species for emergence of Lyme disease remains controversial. Here, by analysing long-term data on incidence in humans over a broad geographical scale in Norway, we show that both high spatial and temporal deer population density increase Lyme disease incidence. However, the trajectories of deer population sizes play an overall limited role for the recent emergence of the disease. Our study suggests that managing deer populations will have some effect on disease incidence, but that Lyme disease may nevertheless increase as multiple drivers are involved. Source

Hoffman M.,Cornell University | Flo B.E.,Norwegian Institute of Bioeconomy Research
Journal of Environmental Policy and Planning

In a landscape of fragmented private ownership, the need to coordinate game management across large areas presents challenges for landowners and public agencies alike. This paper describes how a recent reorganization of moose management in Norway achieves landscape-level planning while maintaining a tradition of local management by hunting teams. These two seemingly contradictory imperatives – coordinating wildlife management across large areas while keeping benefits and control in the hands of local resource users – are resolved through a nesting of management institutions, wherein the state serves a regulatory function and mid-level government (the county) serves to facilitate inter-local cooperation. This paper documents how the system is structured and describes the balance of incentives that enable the system to work. Information was gathered via interviews with staff at the Norwegian Directorate for Nature Management (now called the Norwegian Environment Agency), with wildlife management officials at the municipal level, with hunters, and from the most recent regulatory documents. © 2016 Informa UK Limited, trading as Taylor & Francis Group Source

Zoratti L.,University of Oulu | Zoratti L.,Research and Innovation Center | Jaakola L.,University of Tromso | Jaakola L.,Norwegian Institute of Bioeconomy Research | And 2 more authors.
Journal of Agricultural and Food Chemistry

Vaccinium spp. berries provide some of the best natural sources of anthocyanins. In the wild bilberry (Vaccinium myrtillus L.), a clear increasing trend in anthocyanin biosynthesis has been reported toward northern latitudes of Europe, but studies related to altitude have given contradictory results. The present study focused on the anthocyanin composition in wild bilberries and highbush blueberry (Vaccinium corymbosum L. cv. Brigitta Blue) growing along altitudinal gradients in the Alps of northern Italy. Our results indicate an increasing accumulation of anthocyanins in bilberries along an altitudinal gradient of about 650 m. The accumulation was due to a significant increase in delphinidin and malvidin glycosides, whereas the accumulation of cyanidin and peonidin glycosides was not affected by altitude. Seasonal differences, especially temperature, had a major influence on the accumulation of anthocyanins in blueberries. © 2015 American Chemical Society. Source

Zoratti L.,University of Oulu | Zoratti L.,Research and Innovation Center | Jaakola L.,University of Tromso | Jaakola L.,Norwegian Institute of Bioeconomy Research | And 2 more authors.

Objectives: In recent years, the interest on the effects of the specific wavelengths of the light spectrum on growth and metabolism of plants has been increasing markedly. The present study covers the effect of modified sunlight conditions on the accumulation of anthocyanin pigments in two Vaccinium species: the European wild bilberry (V. myrtillus L.) and the cultivated highbush blueberry (V. corymbosum L.). Methods: The two Vaccinium species were grown in the same test field in the Alps of Trentino (Northern Italy) under modified light environment. The modification of sunlight radiation was carried out in field, through the use of colored photo-selective nets throughout the berry ripening during two consecutive growing seasons. The anthocyanin profile was then assessed in berries at ripeness. Results: The results indicated that the light responses of the two Vaccinium species studied were different. Although both studied species are shade-adapted plants, 90% shading of sunlight radiation was beneficial only for bilberry plants, which accumulated the highest content of anthocyanins in both seasons. The same condition, instead, was not favorable for blueberries, whose maturation was delayed for at least two weeks, and anthocyanin accumulation was significantly decreased compared to berries grown under sunlight conditions. Moreover, the growing season had strong influence on the anthocyanin accumulation in both species, in relation to temperature flow and sunlight spectra composition during the berry ripening period. Conclusions: Our results suggest that the use of colored photo-selective nets may be a complementary agricultural practice for cultivation of Vaccinium species. However, further studies are needed to analyze the effect of the light spectra modifications to other nutritional properties, and to elucidate the molecular mechanisms behind the detected differences between the two relative Vaccinium species. © 2015 Zoratti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source

Li X.,Chinese Academy of Sciences | Li X.,North Carolina State University | Lange H.,Norwegian Institute of Bioeconomy Research
Soil Biology and Biochemistry

Fine root (diameter < 2 mm) production, mortality and decomposition have been poorly estimated at ecosystem scales due to technical limitations. The soil coring method can accurately assess fine root biomass and necromass, but the concurrent growth, death and decomposition processes were not reasonably assessed during the sampling period, leading to greatly biased rate estimates. We developed a dynamic-flow method with two variations to address these processes by combining the soil coring method with an improved decomposition experiment. For a certain interval i (1 ≤ i) in the growing season, the dead fine roots were classified into fine roots dying before the start of interval i (GII-i) and those dying during interval i (GI-i). The decompositions of GII-i and GI-i were separately quantified and integrated into a modified mass balance model to estimate the production, mortality and decomposition. An example study conducted in a secondary Mongolian oak (Quercus mongolica Fischer ex Ledebour) forest showed that fine root production, mortality and decomposition were greatly underestimated by conventional soil coring methods failing to address the simultaneous growth, death and decomposition processes but overestimated by the method in which the decompositions of GII-i and GI-i were not separately determined and the decomposition rate was assumed to be constant. The dynamic-flow method greatly improved the accuracy of fine root estimates and can be widely applied to forests. © 2015 Elsevier Ltd. Source

Discover hidden collaborations