Time filter

Source Type

Changchun, China

Northeast Normal University is one of the six national universities in the People's Republic of China, located in Changchun, Jilin. The University was ranked No.37 in the comprehensive ranking of universities in China in 2013. Wikipedia.

The fibroblast growth factors (FGFs) are important for embryo development, wound healing, hematopoiesis, and angiogenesis. FGF-1, a member of FGF family, is involved in both receptor-dependent pathways and an intracrine pathway. Studies have recently shown that FGF-1 is overexpressed in the early stages of several kinds of cancer. Thus, FGF-1 is a candidate for cancer immunotargeting. To study the potential use of therapeutic antibodies against FGF-1, a monoclonal hybridoma 1C9 secreting monoclonal antibody specific for FGF-1 was developed. Then, a single-chain variable fragment (scFv) antibody was genetically engineered from hybridama 1C9. The binding of the scFv1C9 to the antigen FGF-1 was demonstrated by ELISA and immunoprecipitation assays. Functional analysis showed that the overexpressed scFv1C9 in MCF-7 cells targeted endogenous FGF-1 and prevented the translocation of FGF-1 into the nucleus, resulting in the blockade of the intracrine pathway of FGF-1, which caused the G1 arrest by p21 up-regulation. These results suggest that the generated scFv1C9 is an effective inhibitor of the intracrine pathway of FGF-1 and has a potential application as anti-tumoral agent in breast cancer. Copyright © 2011 Wiley Periodicals, Inc. Source

A neutral polysaccharide fraction (WGPN) prepared from Panax ginseng C.A. Meyer by hot water extraction and DEAE-cellulose chromatography was tested for its anticancer activity alone and in combination with 5-fluorouracil (5-FU) in Sarcoma-180 (S180) tumor-bearing mice by intragastric administration. WGPN alone inhibited S180 tumor growth in a bell-shaped dose-response curve, and the combination with 5-FU showed a synergistic effect. Studies of various immunological activities in S180-bearing mice revealed that WGPN stimulated the proliferation of lymphocytes, increased natural killer cell cytotoxicity, enhanced the phagocytosis and nitric oxide production by macrophages, and increased the level of tumor necrosis factor-alpha in serum. In combination with 5-FU, WGPN mitigated damage to the immune system caused by 5-FU in S180-bearing mice. These results suggest that WGPN might be a potential adjuvant for chemotherapeutic drugs. Source

BACKGROUND: It is widely recognized that interspecific hybridization may induce "genome shock", and lead to genetic and epigenetic instabilities in the resultant hybrids and/or backcrossed introgressants. A prominent component involved in the genome shock is reactivation of cryptic transposable elements (TEs) in the hybrid genome, which is often associated with alteration in the elements' epigenetic modifications like cytosine DNA methylation. We have previously reported that introgressants derived from hybridization between Oryza sativa (rice) and Zizania latifolia manifested substantial methylation re-patterning and rampant mobilization of two TEs, a copia retrotransposon Tos17 and a MITE mPing. It was not known however whether other types of TEs had also been transpositionally reactivated in these introgressants, their relevance to alteration in cytosine methylation, and their impact on expression of adjacent cellular genes. RESULTS: We document in this study that the Dart TE family was transpositionally reactivated followed by stabilization in all three studied introgressants (RZ1, RZ2 and RZ35) derived from introgressive hybridization between rice (cv. Matsumae) and Z. latifolia, while the TEs remained quiescent in the recipient rice genome. Transposon-display (TD) and sequencing verified the element's mobility and mapped the excisions and re-insertions to the rice chromosomes. Methylation-sensitive Southern blotting showed that the Dart TEs were heavily methylated along their entire length, and moderate alteration in cytosine methylation patterns occurred in the introgressants relative to their rice parental line. Real-time qRT-PCR quantification on the relative transcript abundance of six single-copy genes flanking the newly excised or inserted Dart-related TE copies indicated that whereas marked difference in the expression of all four genes in both tissues (leaf and root) were detected between the introgressants and their rice parental line under both normal and various stress conditions, the difference showed little association with the presence or absence of the newly mobilized Dart-related TEs. CONCLUSION: Introgressive hybridization has induced transpositional reactivation of the otherwise immobile Dart-related TEs in the parental rice line (cv. Matsumae), which was accompanied with a moderate alteration in the element's cytosine methylation. Significant difference in expression of the Dart-adjacent genes occurred between the introgressants and their rice parental line under both normal and various abiotic stress conditions, but the alteration in gene expression was not coupled with the TEs. Source

Plants and herbivores can evolve beneficial interactions. Growth factors found in animal saliva are probably key factors underlying plant compensatory responses to herbivory. However, there is still a lack of knowledge about how animal saliva interacts with herbivory intensities and how saliva can mobilize photosynthate reserves in damaged plants. The study examined compensatory responses to herbivory and sheep saliva addition for the grass species Leymus chinensis in three experiments over three years. The first two experiments were conducted in a factorial design with clipping (four levels in 2006 and five in 2007) and two saliva treatment levels. The third experiment examined the mobilization and allocation of stored carbohydrates following clipping and saliva addition treatments. Animal saliva significantly increased tiller number, number of buds, and biomass, however, there was no effect on height. Furthermore, saliva effects were dependent on herbivory intensities, associated with meristem distribution within perennial grass. Animal saliva was found to accelerate hydrolyzation of fructans and accumulation of glucose and fructose. The results demonstrated a link between saliva and the mobilization of carbohydrates following herbivory, which is an important advance in our understanding of the evolution of plant responses to herbivory. Herbivory intensity dependence of the effects of saliva stresses the significance of optimal grazing management. Source

Su F.,Northeast Normal University | Guo Y.,Northeast Normal University
Green Chemistry | Year: 2014

Biodiesel has emerged as one of the best potential renewable energy sources to replace current petroleum-based diesel. It is a sustainable, biodegradable and non-toxic diesel fuel substitute that can be easily produced through base- or acid-catalyzed esterification and transesterification reactions. The conventional base catalysts, although effective, are limited to use of refined vegetable oils, leading to impractical and uneconomical processes due to high feedstock cost and priority as food resources. Biodiesel production processes based on the use of acid catalysts are good alternatives to conventional processes because of their simplicity and the simultaneous promotion of esterification and transesterification reactions from low-grade, highly-acidic and water-containing oils without soap formation. Highly reactive homogeneous Brønsted acid catalysts are efficient for this process, but they suffer from serious contamination and corrosion problems that require the implementation of good separation and purification steps. More recently, a "green" approach to biodiesel production has stimulated the application of sustainable solid acid catalysts as replacements for such liquid acid catalysts so that the use of harmful substances and generation of toxic wastes are avoided; meanwhile, the ease of catalyst separation after the reactions can be realized. Recent studies have proven the technical feasibility and the environmental and economical benefits of biodiesel production via heterogeneous acid-catalyzed esterification and transesterification. In this perspective, various solid acids including sulfated metal oxides, H-form zeolites, sulfonic ion-exchange resins, sulfonic modified mesostructured silica materials, sulfonated carbon-based catalysts, heteropolyacids and acidic ionic liquids are reviewed as heterogeneous catalysts in esterification and transesterification. Meanwhile, for the purpose of facilitating mass-transport of solid acid-catalyzed biodiesel production processes and improving the catalytic stability of the solid acid catalysts in esterification and transesterification reactions, novel and robust organic-inorganic hybrid acid catalysts with unique advantages including strong Brønsted as well as Lewis acid properties, well-defined mesostructure and enhanced surface hydrophobicity are successfully designed, which have been highlighted in this review. This journal is © the Partner Organisations 2014. Source

Discover hidden collaborations