Northeast Midwest Institute

Washington, DC, United States

Northeast Midwest Institute

Washington, DC, United States
Time filter
Source Type

Briski E.,Canadian Department of Fisheries and Oceans | Allinger L.E.,University of Minnesota | Balcer M.,University of Wisconsin-Superior | Cangelosi A.,Northeast Midwest Institute | And 14 more authors.
Environmental Science and Technology | Year: 2013

Nonindigenous species (NIS) cause global biotic homogenization and extinctions, with commercial shipping being a leading vector for spread of aquatic NIS. To reduce transport of NIS by ships, regulations requiring ballast water exchange (BWE) have been implemented by numerous countries. BWE appears to effectively reduce risk for freshwater ports, but provides only moderate protection of marine ports. In the near future, ships may be required to undertake ballast water treatment (BWT) to meet numeric performance standards, and BWE may be phased out of use. However, there are concerns that BWT systems may not operate reliably in fresh or turbid water, or both. Consequently, it has been proposed that BWE could be used in combination with BWT to maximize the positive benefits of both management strategies for protection of freshwater ports. We compared the biological efficacy of "BWE plus BWT" against "BWT alone" at a ballast water treatment experimental test facility. Our comparative evaluation showed that even though BWT alone significantly reduced abundances of all tested organism groups except total heterotrophic bacteria, the BWE plus BWT strategy significantly reduced abundances for all groups and furthermore resulted in significantly lower abundances of most groups when compared to BWT alone. Our study clearly demonstrates potential benefits of combining BWE with BWT to reduce invasion risk of freshwater organisms transported in ships ballast water, and it should be of interest to policy makers and environmental managers. © 2013 American Chemical Society.

Daoust R.,Arcadis | Doss T.,Biohabitats Inc. | Gorman M.,Northeast Midwest Institute | Harwell M.,U.S. Environmental Protection Agency | Ulrich C.,LERS pro tem
Sapiens | Year: 2014

In 2004, a group of large-scale ecosystem restoration practitioners across the United States convened to start the process of sharing restoration science, management, and best practices under the auspices of a traditional conference umbrella. This forum allowed scientists and decision makers to interact in a new type of setting, with science being presented from a perspective that informed ecosystem restoration decisions, and decision makers articulating their decision needs in a manner that informed the types of science questions that needed to be addressed. From that beginning, a core ecosystem restoration practitioner group has formed a community of practice that continues to build and maintain momentum for this type of ecosystem restoration engagement. In the fall of 2013, this community of practice became permanently organized as the Large-scale Ecosystem Restoration Section within the Society for Ecological Restoration. Over the past decade, this community has evaluated and expanded upon ecosystem restoration themes ranging from defining and measuring success, adaptive management, adaptive governance, and linking science with management decision-making. Current and future themes include novel ecosystems, ecosystem goods and services, urban ecosystem restoration, and climate change and ecosystem resilience. © Licence Creative Commons.

Reavie E.D.,University of Minnesota | Cangelosi A.A.,Northeast Midwest Institute | Allinger L.E.,University of Minnesota
Journal of Great Lakes Research | Year: 2010

For decades the Great Lakes have been subject to invasive species introductions through the discharge of ships' ballast water. Several treatment technologies involving physical, chemical, and biological processes have been developed to remove or inactivate organisms in this discharge. Assessing the efficacy of these technologies involves estimating the number of viable propagules in treated discharge relative to untreated controls. For organisms in the 10-50μm size range, for example, the International Maritime Organization (IMO) mandates that fewer than 10 viable organisms per milliliter may be discharged. To date, however, there is no standard method to assess viability of natural assemblages of organisms in this size group (largely phytoplankton and protozoans) in freshwater environments. We report here on a process of assemblage concentration, staining with fluorescein diacetate (FDA), and microscopic observation as a reliable and efficient method to assess densities of viable freshwater organisms in this size category in ballast discharge. A number of other methods, including digestion with enzymes, flow cytometry, and a variety of vital and mortal stains, were tested and discarded during this vetting process due to inconsistent or ambiguous results. © 2010 Elsevier B.V.

Bain M.B.,Cornell University | Cangelosi A.,Northeast Midwest Institute | Eder T.A.,Great Lakes Commission
Environmental Monitoring and Assessment | Year: 2011

Great Lakes environmental agencies want to build the capacity to understand microbe threats and develop responses and mitigation plans in advance of crises such as large fish kills. We developed a collaborative plan for monitoring microbes across the Great Lakes of North America to meet practical needs with the latest science and testing technology. The goal was to build understanding of harmful microbes and be rapid, relevant, and robust in addressing threats. The program was oriented for adaptability to changing threats and will target areas of human activity, especially shipping ports and invasion hotspots. Sampling will be aimed at fish and water with application of molecular testing procedures that will allow rapid, efficient, and very sensitive detection of microbes. Compared to other programs with similar aims, our agenda is broader in scope, focuses on building knowledge, uses a representative sampling design, and will provide findings for proactive management and response planning. The reliance on molecular testing procedures, sample archiving, and rapid and broadly distributed results distinguishes our approach from the other similar programs. Fitting microbe monitoring into the Great Lakes environmental management agenda is expected to add an important new dimension to ecosystem monitoring and yield new knowledge of importance for management. © 2011 Springer Science+Business Media B.V.

Bain M.B.,Cornell University | Cornwell E.R.,Cornell University | Hope K.M.,Cornell University | Eckerlin G.E.,Cornell University | And 8 more authors.
PLoS ONE | Year: 2010

Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus found in fish from oceans of the northern hemisphere and freshwaters of Europe. It has caused extensive losses of cultured and wild fish and has become established in the North American Great Lakes. Large die-offs of wild fish in the Great Lakes due to VHSV have alarmed the public and provoked government attention on the introduction and spread of aquatic animal pathogens in freshwaters. We investigated the relations between VHSV dispersion and shipping and boating activity in the Great Lakes by sampling fish and water at sites that were commercial shipping harbors, recreational boating centers, and open shorelines. Fish and water samples were individually analyzed for VHSV using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and cell culture assays. Of 1,221 fish of 17 species, 55 were VHSV positive with highly varied qRT-PCR titers (1 to 5,950,000 N gene copies). The detections of VHSV in fish and water samples were closely associated and the virus was detected in 21 of 30 sites sampled. The occurrence of VHSV was not related to type of site or shipping related invasion hotspots. Our results indicate that VHSV is widely dispersed in the Great Lakes and is both an enzootic and epizootic pathogen. We demonstrate that pathogen distribution information could be developed quickly and is clearly needed for aquatic ecosystem conservation, management of affected populations, and informed regulation of the worldwide trade of aquatic organisms. © 2010 Bain et al.

Loading Northeast Midwest Institute collaborators
Loading Northeast Midwest Institute collaborators