Entity

Time filter

Source Type


Mahan D.C.,North Central Coordinating Committee on Swine Nutrition NCCC 42 | Azain M.,North Central Coordinating Committee on Swine Nutrition NCCC 42 | Crenshaw T.D.,North Central Coordinating Committee on Swine Nutrition NCCC 42 | Cromwell G.L.,North Central Coordinating Committee on Swine Nutrition NCCC 42 | And 7 more authors.
Journal of Animal Science | Year: 2014

Grains grown in various regions of the United States vary in their innate or natural Se contents. A regional study evaluated the effects of adding inorganic Se (sodium selenite) or organic Se (Se yeast) to diets with differing innate Se contents. A 2 × 2 + 1 factorial evaluating 2 Se sources (organic or inorganic) at 2 Se levels (0.15 or 0.30 mg/kg) in 18 total replicates (n = 360 total pigs). A basal diet was fed without supplemental Se and served as the negative (basal) control. The study was conducted as a randomized complete block design in 9 states (Georgia, Illinois, Kentucky, Nebraska, North Carolina, Ohio, South Dakota, Texas, and Wisconsin) with each station conducting 2 replicates. Pigs were fed from 25 to approximately 115 kg BW. Similar dietary formulations were used at each station, incorporating a common source of trace mineral and Se premixes. Three pigs per treatment in 16 replicates (n = 240) were bled at 55, 85, and 115 kg BW and serum Se and glutathione peroxidase (GSH-Px) activities were determined. Three pigs (n = 260) from each treatment pen were killed at 115 kg BW and issues (liver, loin, and hair) were analyzed for Se. The corn Se content from the various states ranged from 0.026 to 0.283 mg Se/kg while the soybean meal Se content ranged from 0.086 to 0.798 mg Se/kg. Tissue and serum Se concentrations were greater (P < 0.01) when supplemental organic Se was fed, whereas serum GSHPx was greater (P < 0.01) as Se level increased. There were linear increases (P < 0.01) in loin and quadratic increases (P < 0.01) in liver and hair Se concentrations as dietary Se level increased within each state. There was a source × level interaction (P < 0.01) for each tissue resulting in a greater increase when organic Se was fed. Serum Se and GSH-Px activity increased (P < 0.01) when both Se sources were fed and plateaued at each state at 0.15 mg Se/kg. There was a high and significant correlation between each tissue Se, serum Se, and GSHPx activity to dietary Se level indicating that those states having greater grain natural Se contents also had greater tissue Se concentrations. These results indicate that a large difference in corn and soybean meal Se concentrations exists between states, that the addition of organic or inorganic Se to these grains increased tissue and serum Se in each state, and that organic Se was incorporated at greater concentrations in the loin, liver, and hair tissues of grower–finisher pigs than inorganic Se. © 2014 American Society of Animal Science. All rights reserved. Source


Stein H.H.,North Central Coordinating Committee on Swine Nutrition NCCC 42 | Adeola O.,North Central Coordinating Committee on Swine Nutrition NCCC 42 | Cromwell G.L.,North Central Coordinating Committee on Swine Nutrition NCCC 42 | Kim S.W.,North Central Coordinating Committee on Swine Nutrition NCCC 42 | And 2 more authors.
Journal of Animal Science | Year: 2011

A regional experiment was conducted to test the hypothesis that the concentration of dietary Ca does not affect the digestibility of Ca or P in diets fed to growing pigs. Six diets based on corn, potato protein isolate, cornstarch, and soybean oil were formulated. All diets also contained monosodium phosphate, crystalline AA, salt, and a vitamin-micromineral premix. The only difference among the diets was that varying concentrations of calcium carbonate were used to create diets containing 0.33, 0.46, 0.51, 0.67, 0.92, and 1.04% Ca. All diets contained between 0.40 and 0.43% P. Six universities participated in the experiment and each university contributed 2 replicates to the experiment for a total of 12 replicates (initial BW: 23.1 ± 4.4 kg). Pigs were placed in metabolism cages that allowed total, but separate, collection of feces and urine from the pigs. Pigs within each replicate were randomly allotted to the 6 diets and fed experimental diets for 14 d with urine and feces being collected over a 5-d period. Diets, feces, and urine samples were analyzed for Ca and P, and the daily balance, the apparent total tract digestibility (ATTD), and the retention of Ca and P were calculated. Results indicated that intake, fecal excretion, and urinary excretion of Ca increased (linear, P < 0.05) as dietary Ca concentration increased. The daily intake of P was not affected by the dietary concentration of Ca, but fecal excretion of P increased (linear, P < 0.05) as dietary Ca concentrations increased. In contrast, urinary P output was decreased (linear, P < 0.05) as dietary Ca increased. The retention of Ca increased (linear, P < 0.05) from 1.73 to 4.60 g/d, whereas the retention of P decreased (linear, P < 0.05) from 1.98 to 1.77 g/d as dietary Ca concentrations increased. However, if calculated as a percentage of intake, both Ca and P retention were decreased (linear, P < 0.05) as dietary Ca concentration increased (from 55.4 to 46.1% and from 48.4 to 43.5%, respectively). The ATTD of Ca was not affected by the dietary concentration of Ca, but the ATTD of P was decreased (linear, P < 0.05) from 56.9 to 46.2% as dietary Ca concentration increased. It is concluded that the dietary concentration of Ca does not affect the ATTD of Ca in calcium carbonate, but increased concentrations of dietary Ca may decrease the ATTD of P in diets based on corn, potato protein isolate, and monosodium phosphate. © 2011 American Society of Animal Science. All rights reserved. Source

Discover hidden collaborations