Norsk Institutt for Luftforskning

Kjeller, Norway

Norsk Institutt for Luftforskning

Kjeller, Norway
SEARCH FILTERS
Time filter
Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: NMP-29-2015 | Award Amount: 6.33M | Year: 2016

The HISENTS vision is to address the problem of the dearth of high-quality tools for nano-safety assessment by introducing an innovative multimodular high throughput screening (HTP) platform including a set of individual modules each representing a critical physiological function connected and integrated in a hierarchical vectorial manner by a microfluidic network. The increase of the capacity to perform nano-safety assessment will be realised by innovative instrumentation developments for HTP and high content analysis (HCA) approaches. Toxicogenomics on chip is also one embedded objective. Our interdisciplinary approach focuses on tools to maximise the read-across and to assess applicable endpoints for advanced risk assessment of nanomaterials (NM). The main goal is thus to establish individual chip-based microfluidic tools as devices for (nano)toxicity screening which can be combined as an on-line HTP platform. Seven different chip-based sensor elements will be developed and hierarchically combined via a flow system to characterise toxicity pathways of NM. The HISENTS platform allows the grouping and identifying of NM. Parallel to the screening, the pathway and interaction of NM in biological organisms will be simulated using the physiologically based pharmacokinetic (PBPK) model. Using the different sensor modules from the molecular to cell to organ level, HISENTS can input quantitative parameters into the PBPK model resulting in an effective pathway analysis for NM and other critical compounds. The developed platform is crucial for realistic nano-safety assessment and will also find extensive application in pharmaceutical screening due to the flexible modifications of the HTP platform. The specific objective is the development of a multimodular HTP platform as new a screening tool for enhancing the efficiency of hazard profiling. Currently, no such flexible, easy-to-use screening platform with flexibly combinable chip-based sensors is available on the market.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-04-2015 | Award Amount: 6.69M | Year: 2016

CLAiR-City will apportion air pollution emissions and concentrations, carbon footprints and health outcomes by city citizens behaviour and day-to-day activities in order to make these challenges relevant to how people chose to live, behave and interact within their city environment. Through an innovative engagement and quantification toolkit, we will stimulate the public engagement necessary to allow citizens to define a range of future city scenarios for reducing their emissions to be used for supporting and informing the development of bespoke city policy packages out to 2050. Using six pilot cities/regions (Amsterdam, NL; Bristol, UK; Aveiro, PT; Liguria, IT; Ljubljana, SI; and Sosnowiec, PO), CLAiR-City will source apportion current emissions/concentrations and carbon emissions not only by technology but by citizens activities, behavior and practices. CLAiR-City will explore and evaluate current local, national and international policy and governance structures to better understand the immediate policy horizon and how that may impact on citizens and their citys future. Then, working with the new methods of source apportionment to combine both baseline citizen and policy evidence, CLAiR-City will use innovative engagement methods such as Games, an App and Citizen Days to inform and empower citizens to understand the current challenges and then subsequently define their own visions of their citys future based on how their want to live out to 2050. The impact of these citizen-led future city scenarios will analysed, to develop city specific policy packages in which the clean-air, low-carbon, healthy future, as democratically defined by the city citizens, is described and quantified. The results of the CLAiR-City process will be evaluated to provide policy lessons at city, national and EU levels. Additionally, the toolkit structure will be developed for all EU cities with more than 50,000 citizens establishing a basis to roll out the CLAiR-City process across Europe.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: NMP-26-2014 | Award Amount: 11.93M | Year: 2015

One of the greatest challenges facing regulators in the ever changing landscape of novel nano-materials is how to design and implement a regulatory process which is robust enough to deal with a rapidly diversifying system of manufactured nanomaterials (MNM) over time. Not only does the complexity of the MNM present a problem for regulators, the validity of data decreases with time, so that the well-known principle of the half-life of facts (Samuel Arbesman, 2012) means that what is an accepted truth now is no longer valid in 20 or 30 years time. The challenge is to build a regulatory system which is flexible enough to be able to deal with new targets and requirements in the future, and this can be helped by the development and introduction of Safe by Design (SbD) principles. The credibility of such a regulatory system, underpinned by the implementation of SbD, is essential for industry, who while accepting the need for regulation demand it is done in a cost effective and rapid manner. The NANoREG II project, built around the challenge of coupling SbD to the regulatory process, will demonstrate and establish new principles and ideas based on data from value chain implementation studies to establish SbD as a fundamental pillar in the validation of a novel MNM. It is widely recognized by industries as well as by regulatory agencies that grouping strategies for NM are urgently needed. ECETOC has formed a task force on NM grouping and also within the OECD WPMN a group works on NM categorisation. However, so far no reliable and regulatory accepted grouping concepts could be established. Grouping concepts that will be developed by NanoREG II can be regarded as a major innovation therefore as guidance documents on NM grouping will not only support industries or regulatory agencies but would also strongly support commercial launch of new NM.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: SPACE | Award Amount: 5.00M | Year: 2014

MACC-III is the last of the pre-operational stages in the development of the Copernicus Atmosphere Service. Its overall institutional objective is to function as the bridge between the developmental precursor projects - GEMS, PROMOTE, MACC and MACC-II- and the Atmosphere Service envisaged to form part of Copernicus Operations. MACC-III will provide continuity of the atmospheric services provided by MACC-II. Its continued provision of coherent atmospheric data and information, either directly or via value-adding downstream services, is for the benefit of European citizens and helps meet global needs as a key European contribution to the Global Climate Observing System (GCOS) and the encompassing Global Earth Observation System of Systems (GEOSS). Its services cover in particular: air quality, climate forcing, stratospheric ozone, UV radiation and solar-energy resources. MACC-IIIs services are freely and openly available to users throughout Europe and in the world. MACC-III and its downstream service sector will enable European citizens at home and abroad to benefit from improved warning, advisory and general information services and from improved formulation and implementation of regulatory policy. MACC-III, together with its scientific-user sector, also helps to improve the provision of science-based information for policy-makers and for decision-making at all levels. The most significant economic benefit by far identified in the ESA-sponsored Socio-Economic Benefits Analysis of Copernicus report published in July 2006 was the long-term benefit from international policy on climate change. Long-term benefit from air quality information ranked second among all Copernicus benefits in terms of present value. Immediate benefits can be achieved through efficiency gains in relation to current policies. The estimated benefits substantially outweigh the costs of developing and operating the proposed services.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRADEV-4-2014-2015 | Award Amount: 15.00M | Year: 2015

ENVRIPLUS is a cluster of research infrastructures (RIs) for Environmental and Earth System sciences, built around ESFRI roadmap and associating leading e-infrastructures and Integrating Activities together with technical specialist partners. ENVRIPLUS is driven by 3 overarching goals: 1) favoring cross-fertilization between infrastructures, 2) implementing innovative concepts and devices across RIs, and 3) facilitating research and innovation in the field of environment to an increasing number of users outside the RIs. ENVRIPLUS organizes its activities along a main strategic plan where sharing multi-disciplinary expertise will be most effective. It aims to improve Earth observation monitoring systems and strategies, including actions towards harmonization and innovation, to generate common solutions to many shared information technology and data related challenges, to harmonize policies for access and provide strategies for knowledge transfer amongst RIs. ENVRIPLUS develops guidelines to enhance trans-disciplinary use of data and data-products supported by applied use-cases involving RIs from different domains. ENVRIPLUS coordinates actions to improve communication and cooperation, addressing Environmental RIs at all levels, from management to end-users, implementing RI-staff exchange programs, generating material for RI personnel, and proposing common strategic developments and actions for enhancing services to users and evaluating the socio-economic impacts. ENVRIPLUS is expected to facilitate structuration and improve quality of services offered both within single RIs and at pan-RI level. It promotes efficient and multi-disciplinary research offering new opportunities to users, new tools to RI managers and new communication strategies for environmental RI communities. The produced solutions, services and other project results are made available to all environmental RI initiatives, thus contributing to the development of a consistent European RI ecosystem.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRAIA-1-2014-2015 | Award Amount: 10.13M | Year: 2015

ACTRIS-2 addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases capitalizing work of FP7-ACTRIS. ACTRIS-2 aims to achieve the construction of a user-oriented RI, unique in the EU-RI landscape. ACTRIS-2 provides 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column), relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit harmonization of collected data and their dissemination. ACTRIS-2 offers networking expertise, upgraded calibration services, training of users, trans-national access to observatories and calibration facilities, virtual access to high-quality data products. Through joint research activities, ACTRIS-2 develops new integration tools that will produce scientific or technical progresses reusable in infrastructures, thus shaping future observation strategies. Innovation in instrumentation is one of the fundamental building blocks of ACTRIS-2. Associated partnership with SMEs stimulates development of joint-ventures addressing new technologies for use in atmospheric observations. Target user-groups in ACTRIS-2 comprise a wide range of communities worldwide. End-users are institutions involved in climate and air quality research, space agencies, industries, air quality agencies. ACTRIS-2 will improve systematic and timely collection, processing and distribution of data and results for use in modelling, in particular towards implementation of atmospheric and climate services. ACTRIS-2 invests substantial efforts to ensure long-term sustainability beyond the term of the project by positioning the project in both the GEO and the on-going ESFRI contexts, and by developing synergies with national initiatives.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-20-2016 | Award Amount: 10.24M | Year: 2016

The NextGEOSS project will implement a federated data hub for access and exploitation of Earth Observation data, including user-friendly tools for data mining, discovery, access and exploitation. This data hub will be supported by a strong commitment to the engagement of Earth Observation and related communities, with the view of supporting the creation of innovative and business oriented applications. The main general objectives for NextGEOSS are to 1) Deliver the next generation data hub and Earth Observation exploitation for innovation and business; 2) Engage communities, promoting innovative GEOSS powered applications from Europe; and 3) Advocate GEOSS as a sustainable European approach for Earth Observation data distribution and exploitation. NextGEOSS engages main providers of Earth Observation data, including Copernicus Collaborative Ground Segments and Core Services. While continuing to support the GEO-DAB and OpenSearch as the middleware components in charge of interconnecting the heterogeneous and distributed capacities contributing to GEOSS, NextGEOSS focuses on a fundamental change to facilitate the connectivity to the European and global data centres with new discovery and processing methods. It will leverage Web and Cloud technologies, offering seamless and user-friendly access to all the relevant data repositories, as well as providing efficient operations for search, retrieval, processing/re-processing, visualization, analysis and combination of products from federated sources. NextGEOSS includes a set of demonstrative pilot activities, which will showcase the systems capabilities, and a number of initiatives devoted to engagement of GEO and other EO-related communities.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: SC5-18a-2014 | Award Amount: 1000.00K | Year: 2015

ConnectinGEOs primary goal is to link existing coordinated Earth Observation networks with science and technology (S&T) communities, the industry sector and the GEOSS and Copernicus stakeholders. The aim is to facilitate a broader and more accessible knowledge base to support the needs of the GEO Societal Benefit Areas (SBAs) and their users. A broad range of subjects from climate, natural resources and raw materials, to the emerging UN Sustainable Development Goals (SDGs) will be addressed. A tangible outcome of the project will be a prioritized list of critical gaps within the European Union in observations and the models that translate observations into practice-relevant knowledge. The prioritized list will include the research activities required to address these gaps. Ultimately, this will increase coherency of European observation networks, increase the use of Earth observations for assessments and forecasts and inform the planning for future observation systems through a sustainable approach that will survive beyond the end of this project. ConnectinGEO has 4 major objectives: a) Enable a European Network of Earth Observation Networks (ENEON) including space-based, airborne and in-situ observations networks. b) Provide a methodology to convert the knowledge needs into a coherent observation and measurement compendium for ENEON strategy and development. c) Apply the ConnectinGEO methodology to identify and assess the priority of gaps. d) Open the results of the project and exploit them beyond the project end.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-10-2015 | Award Amount: 2.00M | Year: 2016

The overall objective of hackAIR is to develop and pilot test an open platform that will enable communities of citizens to easily set up air quality monitoring networks and engage their members in measuring and publishing outdoor air pollution levels, leveraging the power of online social networks, mobile and open hardware technologies, and engagement strategies. The hackAIR platform will enable the collection of data from: measurements from existing air quality stations and open data user-generated sky-depicting images (either publicly available geo-tagged and time-stamped images posted through social media platforms, or images captured by users low-cost open hardware devices easily assembled by citizens using commercial off-the-shelf parts A data fusion algorithm and reasoning services will be developed for synthesising heterogeneous air quality data into air quality-aware personalised services to citizens. The hackAIR platform will be co-created with the users, and offered through: a web application that communities of citizens will be able to install and customize a mobile app that citizens can use to get convenient access to easy-to-understand air quality information, contribute to measurements by an open sensor, or by taking and uploading sky-depicting photos, and receive personalised air quality-aware information on their everyday activities The hackAIR platform will be tested in two pilot locations, with the direct participation of a grassroots NGO with >400.000 members and a health association with >19.000 members. Appropriate strategies and tools will be developed and deployed for increasing user engagement and encouraging behavioural change. The usability and effectiveness of the hackAIR platform, and its social and environmental impact will be assessed. A sustainability and exploitation strategy will pave the way for the future availability of the hackAIR toolkit, community and website, and explore opportunities for commercial exploitation.

Loading Norsk Institutt for Luftforskning collaborators
Loading Norsk Institutt for Luftforskning collaborators