Time filter

Source Type


Zhang G.,Cancer Research Institute | Miyake M.,Cancer Research Institute | Lawton A.,Orlando Health | Goodison S.,Cancer Research Institute | And 4 more authors.
BMC Cancer | Year: 2014

Background: Cancer invasion and metastasis develops through a series of steps that involve the loss of cell to cell and cell to matrix adhesion, degradation of extracellular matrix and induction of angiogenesis. Different protease systems (e.g., matrix metalloproteinases, MMPs) are involved in these steps. MMP-10, one of the lesser studied MMPs, is limited to epithelial cells and can facilitate tumor cell invasion by targeting collagen, elastin and laminin. Enhanced MMP-10 expression has been linked to poor clinical prognosis in some cancers, however, mechanisms underlying a role for MMP-10 in tumorigenesis and progression remain largely unknown. Here, we report that MMP-10 expression is positively correlated with the invasiveness of human cervical and bladder cancers.Methods: Using commercial tissue microarray (TMA) of cervical and bladder tissues, MMP-10 immunohistochemical staining was performed. Furthermore using a panel of human cells (HeLa and UROtsa), in vitro and in vivo experiments were performed in which MMP-10 was overexpressed or silenced and we noted phenotypic and genotypic changes.Results: Experimentally, we showed that MMP-10 can regulate tumor cell migration and invasion, and endothelial cell tube formation, and that MMP-10 effects are associated with a resistance to apoptosis. Further investigation revealed that increasing MMP-10 expression stimulates the expression of HIF-1α and MMP-2 (pro-angiogenic factors) and PAI-1 and CXCR2 (pro-metastatic factors), and accordingly, targeting MMP-10 with siRNA in vivo resulted in diminution of xenograft tumor growth with a concomitant reduction of angiogenesis and a stimulation of apoptosis.Conclusion: Taken together, our findings show that MMP-10 can play a significant role in tumor growth and progression, and that MMP-10 perturbation may represent a rational strategy for cancer treatment. © 2014 Zhang et al.; licensee BioMed Central Ltd. Source

Urquidi V.,Cancer Research Institute | Urquidi V.,Nonagen Bioscience Corporation | Kim J.,Cancer Research Institute | Chang M.,University of Florida | And 5 more authors.
PLoS ONE | Year: 2012

The early detection of bladder cancer (BCa) is pivotal for successful patient treatment and management. Through genomic and proteomic studies, we have identified a number of bladder cancer-associated biomarkers that have potential clinical utility. In a case-control study, we examined voided urines from 127 subjects: 64 tumor-bearing subjects and 63 controls. The urine concentrations of the following proteins were assessed by enzyme-linked immunosorbent assay (ELISA); C-C motif chemokine 18 (CCL18), Plasminogen Activator Inhibitor 1 (PAI-1) and CD44. Data were compared to a commercial ELISA-based BCa detection assay (BTA-Trak©) and voided urinary cytology. We used analysis of the area under the curve of receiver operating characteristic curves to compare the ability of CCL18, PAI-1, CD44, and BTA to detect BCa in voided urine samples. Urinary concentrations of CCL18, PAI-1, and BTA were significantly elevated in subjects with BCa. CCL18 was the most accurate biomarker (AUC; 0.919; 95% confidence interval [CI], 0.8704-0.9674). Multivariate regression analysis highlighted CCL18 (OR; 18.31; 95% CI, 4.95-67.70, p<0.0001) and BTA (OR; 6.43; 95% CI, 1.86-22.21, p = 0.0033) as independent predictors of BCa in voided urine samples. The combination of CCL18, PAI-1 and CD44 improved the area under the curve to0.938. Preliminary results indicate that CCL18 was a highly accurate biomarker for BCa detection in this cohort. Monitoring CCL18 in voided urine samples has the potential to improve non-invasive tests for BCa diagnosis. Furthermore using the combination of CCL18, PAI-1 and CD44 may make the model more robust to errors to detect BCa over the individual biomarkers or BTA. © 2012 Urquidi et al. Source

Goodison S.,Cancer Research Institute | Goodison S.,Nonagen Bioscience Corporation | Chang M.,University of Florida | Dai Y.,University of Florida | And 4 more authors.
PLoS ONE | Year: 2012

Accurate urinary assays for bladder cancer (BCa) detection would benefit both patients and healthcare systems. Through genomic and proteomic profiling of urine components, we have previously identified a panel of biomarkers that can outperform current urine-based biomarkers for the non-invasive detection of BCa. Herein, we report the diagnostic utility of various multivariate combinations of these biomarkers. We performed a case-controlled validation study in which voided urines from 127 patients (64 tumor bearing subjects) were analyzed. The urinary concentrations of 14 biomarkers (IL-8, MMP-9, MMP-10, SDC1, CCL18, PAI-1, CD44, VEGF, ANG, CA9, A1AT, OPN, PTX3, and APOE) were assessed by enzyme-linked immunosorbent assay (ELISA). Diagnostic performance of each biomarker and multivariate models were compared using receiver operating characteristic curves and the chi-square test. An 8-biomarker model achieved the most accurate BCa diagnosis (sensitivity 92%, specificity 97%), but a combination of 3 of the 8 biomarkers (IL-8, VEGF, and APOE) was also highly accurate (sensitivity 90%, specificity 97%). For comparison, the commercial BTA-Trak ELISA test achieved a sensitivity of 79% and a specificity of 83%, and voided urine cytology detected only 33% of BCa cases in the same cohort. These datashow that a multivariate urine-based assay can markedly improve the accuracy of non-invasive BCa detection. Further validation studies are under way to investigate the clinical utility of this panel of biomarkers for BCa diagnosis and disease monitoring. © 2012 Goodison et al. Source

Giacoia E.G.,Cancer Research Institute | Miyake M.,Cancer Research Institute | Lawton A.,Orlando Health | Goodison S.,Cancer Research Institute | And 3 more authors.
Molecular Cancer Research | Year: 2014

The canonical function of plasminogen activator inhibitor-1 (PAI-1/SERPINE1) is as an inhibitor of urokinase-type plasminogen activator for blood clot maintenance, but it is now also considered a pleiotropic factor that can exert diverse cellular and tumorigenic effects. However, the mechanism controlling its pleiotropic effects is far from being understood. To elucidate the tumorigenic role of PAI-1, we tested the effects of PAI-1 after manipulation of its expression or through the use of a small-molecule inhibitor, tiplaxtinin. Downregulation of PAI-1 significantly reduced cellular proliferation through an inability to progress from the G0-G 1 phase of the cell cycle. Accordingly, overexpression of PAI-1 augmented proliferation by encouraging S-phase entry. Biochemically, cell-cycle arrest was associated with the depletion of the G1-phase transition complexes, cyclin D3/cdk4/6 and cyclin E/cdk2, in parallel with the upregulation of the cell-cycle inhibitors p53, p21Cip1/Waf1, and p27Kip1. PAI-1 depletion significantly decreased the tumor size of urothelial T24 and UM-UC-14 xenografts, and overexpression of PAI-1 substantially increased the tumor size of HeLa xenografts. Finally, immunohistochemical analysis of human bladder and cervical tumor tissue microarrays revealed increased expression of PAI-1 in cancerous tissue, specifically in aggressive tumors, supporting the relevance of this molecule in human tumor biology. ©2014 AACR. Source

Miyake M.,University of Texas M. D. Anderson Cancer Center | Goodison S.,University of Texas M. D. Anderson Cancer Center | Goodison S.,Nonagen Bioscience Corporation | Lawton A.,Orlando Health | And 3 more authors.
Oncogene | Year: 2015

Tumor angiogenesis is essential for tumor growth and metastasis and is dependent on key angiogenic factors. Angiogenin (ANG), a 14.2-kDa polypeptide member of the RNase A superfamily, is an angiogenic protein that has been reported to be upregulated and associated with poor prognosis in some human cancers. The mechanisms through which aberrant ANG levels promote specific steps in tumor progression are unknown. Here, we show that ANG expression in human tissues is strongly correlated with an invasive cancer phenotype. We also show that ANG induces cellular survival, proliferation, endothelial tube formation and xenograft angiogenesis and growth. Novel mechanistic investigations revealed that ANG expression stimulated matrix metallopeptidase-2 (MMP2) expression through the phosphorylation of ERK1/2. Targeting ANG in vivo with N65828, a small-molecule inhibitor of the ribonucleolytic activity of human ANG, resulted in the diminution of xenograft tumoral growth through the inhibition of angiogenesis. Our findings support an unrecognized interplay between ANG, ERK1/2 and MMP2 that can impact tumor growth and progression. The targeting of ANG and associated factors could provide a novel strategy to inhibit tumor establishment and growth. © 2015 Macmillan Publishers Limited. Source

Discover hidden collaborations