Nonagen Bioscience Corporation

JACKSONVILLE, FL, United States

Nonagen Bioscience Corporation

JACKSONVILLE, FL, United States
SEARCH FILTERS
Time filter
Source Type

Rosser C.J.,University of Texas M. D. Anderson Cancer Center | Rosser C.J.,Nonagen Bioscience Corporation | Rosser C.J.,University of Hawaii at Manoa | Chang M.,University of Florida | And 6 more authors.
Cancer Epidemiology Biomarkers and Prevention | Year: 2014

Background: Up to 70% of patients with non-muscle-invasive bladder cancer (NMIBC) experience disease recurrence, making it one of the most prevalent cancers in the United States. The purpose of this study was to test the performance of a multiplex urinary biomarker assay for the monitoring of voided urine for recurrent bladder cancer. Methods: This retrospective, multicenter study included a total of 125 subjects with a history of bladder cancer. Voided urine specimens were collected before procedure from these subjects (53 with confirmed tumor recurrence and 72 with confirmed non-tumor recurrence) for analysis. A prediction rule generated from the performance characteristics of 10 single biomarkers (IL8, MMP9, MMP10, SERPINA1, VEGFA, ANG, CA9, APOE, SERPINE1, and SDC1) was measured using ELISA. The diagnostic performance of the biomarker panel was assessed using receiver operator curves (ROC) and descriptive statistical values (e.g., sensitivity and specificity). Results: The combination of all 10 biomarkers outperformed any single biomarker with a calculated AUROC for the diagnostic panel of 0.904 [95% confidence interval (CI), 0.853-0.956]. The multiplex assay achieved an overall sensitivity of 79% and specificity of 88% for recurrent bladder cancer and significantly outperformed the Urovysion cytogenetic assay (sensitivity 42%, specificity 94%) and voided urinary cytology (sensitivity 33%, specificity 90%). Conclusions: A diagnostic panel of 10 urinary biomarkers that accurately detects primary bladder cancer also performs well for the detection of recurrent bladder cancer. Impact: The identification of a reliable urine-based surveillance and detection assay would be of benefit to both patients and the healthcare system. © 2014 American Association for Cancer Research.


Miyake M.,Cancer Research Institute | Lawton A.,Orlando Health | Goodison S.,Nonagen Bioscience Corporation | Urquidi V.,Nonagen Bioscience Corporation | And 6 more authors.
BMC Cancer | Year: 2013

Background: Chemokines, including chemokine (C-X-C motif) ligand 1 (CXCL1), may regulate tumor epithelial-stromal interactions that facilitate tumor growth and invasion. Studies have linked CXCL1 expression to gastric, colon and skin cancers, but limited studies to date have described CXCL1 protein expression in human bladder cancer (BCa).Methods: CXCL1 protein expression was examined in 152 bladder tissue specimens (142 BCa) by immunohistochemical staining. The expression of CXCL1 was scored by assigning a combined score based on the proportion of cells staining and intensity of staining. CXCL1 expression patterns were correlated with clinicopathological features and follow-up data.Results: CXCL1 protein expression was present in cancerous tissues, but was entirely absent in benign tissue. CXCL1 combined immunostaining score was significantly higher in high-grade tumors relative to low-grade tumors (p = 0.012). Similarly, CXCL1 combined immunostaining score was higher in high stage tumors (T2-T4) than in low stage tumors (Ta-T1) (p < 0.0001). An increase in the combined immunostaining score of CXCL1 was also associated with reduced disease-specific survival.Conclusion: To date, this is the largest study describing increased CXCL1 protein expression in more aggressive phenotypes in human BCa. Further studies are warranted to define the role CXCL1 plays in bladder carcinogenesis and progression. © 2013 Miyake et al.; licensee BioMed Central Ltd.


Miyake M.,University of Texas M. D. Anderson Cancer Center | Goodison S.,Nonagen Bioscience Corporation | Lawton A.,Orlando Health | Gomes-Giacoia E.,University of Texas M. D. Anderson Cancer Center | Rosser C.J.,Nonagen Bioscience Corporation
Oncogene | Year: 2014

Tumor angiogenesis is essential for tumor growth and metastasis and is dependent on key angiogenic factors. Angiogenin (ANG), a 14.2-kDa polypeptide member of the RNase A superfamily, is an angiogenic protein that has been reported to be upregulated and associated with poor prognosis in some human cancers. The mechanisms through which aberrant ANG levels promote specific steps in tumor progression are unknown. Here, we show that ANG expression in human tissues is strongly correlated with an invasive cancer phenotype. We also show that ANG induces cellular survival, proliferation, endothelial tube formation and xenograft angiogenesis and growth. Novel mechanistic investigations revealed that ANG expression stimulated matrix metallopeptidase-2 (MMP2) expression through the phosphorylation of ERK1/2. Targeting ANG in vivo with N65828, a small-molecule inhibitor of the ribonucleolytic activity of human ANG, resulted in the diminution of xenograft tumoral growth through the inhibition of angiogenesis. Our findings support an unrecognized interplay between ANG, ERK1/2 and MMP2 that can impact tumor growth and progression. The targeting of ANG and associated factors could provide a novel strategy to inhibit tumor establishment and growth.Oncogene advance online publication, 24 February 2014; doi:10.1038/onc.2014.2.


Miyake M.,University of Texas M. D. Anderson Cancer Center | Goodison S.,University of Texas M. D. Anderson Cancer Center | Goodison S.,Nonagen Bioscience Corporation | Lawton A.,Orlando Health | And 3 more authors.
Oncogene | Year: 2015

Tumor angiogenesis is essential for tumor growth and metastasis and is dependent on key angiogenic factors. Angiogenin (ANG), a 14.2-kDa polypeptide member of the RNase A superfamily, is an angiogenic protein that has been reported to be upregulated and associated with poor prognosis in some human cancers. The mechanisms through which aberrant ANG levels promote specific steps in tumor progression are unknown. Here, we show that ANG expression in human tissues is strongly correlated with an invasive cancer phenotype. We also show that ANG induces cellular survival, proliferation, endothelial tube formation and xenograft angiogenesis and growth. Novel mechanistic investigations revealed that ANG expression stimulated matrix metallopeptidase-2 (MMP2) expression through the phosphorylation of ERK1/2. Targeting ANG in vivo with N65828, a small-molecule inhibitor of the ribonucleolytic activity of human ANG, resulted in the diminution of xenograft tumoral growth through the inhibition of angiogenesis. Our findings support an unrecognized interplay between ANG, ERK1/2 and MMP2 that can impact tumor growth and progression. The targeting of ANG and associated factors could provide a novel strategy to inhibit tumor establishment and growth. © 2015 Macmillan Publishers Limited.


Goodison S.,Cancer Research Institute | Goodison S.,Nonagen Bioscience Corporation | Chang M.,University of Florida | Dai Y.,University of Florida | And 4 more authors.
PLoS ONE | Year: 2012

Accurate urinary assays for bladder cancer (BCa) detection would benefit both patients and healthcare systems. Through genomic and proteomic profiling of urine components, we have previously identified a panel of biomarkers that can outperform current urine-based biomarkers for the non-invasive detection of BCa. Herein, we report the diagnostic utility of various multivariate combinations of these biomarkers. We performed a case-controlled validation study in which voided urines from 127 patients (64 tumor bearing subjects) were analyzed. The urinary concentrations of 14 biomarkers (IL-8, MMP-9, MMP-10, SDC1, CCL18, PAI-1, CD44, VEGF, ANG, CA9, A1AT, OPN, PTX3, and APOE) were assessed by enzyme-linked immunosorbent assay (ELISA). Diagnostic performance of each biomarker and multivariate models were compared using receiver operating characteristic curves and the chi-square test. An 8-biomarker model achieved the most accurate BCa diagnosis (sensitivity 92%, specificity 97%), but a combination of 3 of the 8 biomarkers (IL-8, VEGF, and APOE) was also highly accurate (sensitivity 90%, specificity 97%). For comparison, the commercial BTA-Trak ELISA test achieved a sensitivity of 79% and a specificity of 83%, and voided urine cytology detected only 33% of BCa cases in the same cohort. These datashow that a multivariate urine-based assay can markedly improve the accuracy of non-invasive BCa detection. Further validation studies are under way to investigate the clinical utility of this panel of biomarkers for BCa diagnosis and disease monitoring. © 2012 Goodison et al.


Urquidi V.,Cancer Research Institute | Urquidi V.,Nonagen Bioscience Corporation | Kim J.,Cancer Research Institute | Chang M.,University of Florida | And 5 more authors.
PLoS ONE | Year: 2012

The early detection of bladder cancer (BCa) is pivotal for successful patient treatment and management. Through genomic and proteomic studies, we have identified a number of bladder cancer-associated biomarkers that have potential clinical utility. In a case-control study, we examined voided urines from 127 subjects: 64 tumor-bearing subjects and 63 controls. The urine concentrations of the following proteins were assessed by enzyme-linked immunosorbent assay (ELISA); C-C motif chemokine 18 (CCL18), Plasminogen Activator Inhibitor 1 (PAI-1) and CD44. Data were compared to a commercial ELISA-based BCa detection assay (BTA-Trak©) and voided urinary cytology. We used analysis of the area under the curve of receiver operating characteristic curves to compare the ability of CCL18, PAI-1, CD44, and BTA to detect BCa in voided urine samples. Urinary concentrations of CCL18, PAI-1, and BTA were significantly elevated in subjects with BCa. CCL18 was the most accurate biomarker (AUC; 0.919; 95% confidence interval [CI], 0.8704-0.9674). Multivariate regression analysis highlighted CCL18 (OR; 18.31; 95% CI, 4.95-67.70, p<0.0001) and BTA (OR; 6.43; 95% CI, 1.86-22.21, p = 0.0033) as independent predictors of BCa in voided urine samples. The combination of CCL18, PAI-1 and CD44 improved the area under the curve to0.938. Preliminary results indicate that CCL18 was a highly accurate biomarker for BCa detection in this cohort. Monitoring CCL18 in voided urine samples has the potential to improve non-invasive tests for BCa diagnosis. Furthermore using the combination of CCL18, PAI-1 and CD44 may make the model more robust to errors to detect BCa over the individual biomarkers or BTA. © 2012 Urquidi et al.


Rosser C.J.,University of Central Florida | Rosser C.J.,Nonagen Bioscience Corporation | Urquidi V.,Nonagen Bioscience Corporation | Urquidi V.,Cancer Research Institute | And 2 more authors.
Biomarkers in Medicine | Year: 2013

Bladder cancer is one of the most prevalent cancers worldwide. Early detection of bladder tumors is critical for improved patient outcomes. The standard method for detection and surveillance of bladder tumors is cystoscopy with urinary cytology. Limitations of cystoscopy and urinary cytology have brought to light the need for more robust diagnostic assays. Ideally, such assays would be applicable to noninvasively obtained, voided urine, and be designed not only for diagnosis, but also for monitoring disease recurrence and response to therapy. Consequently, the development of a noninvasive urine-based assay would be of tremendous benefit to both patients and healthcare systems. This article reports some of the more prominent urine-based biomarkers reported in the literature. In addition, some new technologies that have been used to identify novel urinary biomarkers are highlighted. © 2013 Future Medicine Ltd.


Miyake M.,Cancer Research Institute | Goodison S.,Cancer Research Institute | Goodison S.,Nonagen Bioscience Corporation | Urquidi V.,Cancer Research Institute | And 3 more authors.
Laboratory Investigation | Year: 2013

Endothelial cell growth and proliferation are critical for angiogenesis; thus, greater insight into the regulation of pathological angiogenesis is greatly needed. Previous studies have reported on chemokine (C-X-C motif) ligand 1 (CXCL1) expression in epithelial cells and that secretion of CXCL1 from these epithelial cells induces angiogenesis. However, limited reports have demonstrated CXCL1 expression in endothelial cells. In this report, we present data that expand on the role of CXCL1 in human endothelial cells inducing angiogenesis. Specifically, CXCL1 is expressed and secreted from human endothelial cells. Interference of CXCL1 function using neutralizing antibodies resulted in a reduction in endothelial cell migration and viability/ proliferation, the latter associated with a decrease in levels of cyclin D and cdk4. In vitro studies revealed that CXCL1 influenced neoangiogenesis through the regulation of epidermal growth factor and ERK1/2. In a xenograft angiogenesis model, interference of CXCL1 function resulted in inhibition of angiogenesis. A better understanding of the role of CXCL1 in the interactions between the endothelial and epithelial components will provide insight into how human tissues use CXCL1 to survive and thrive in a hostile environment. © 2013 USCAP, Inc. All rights reserved.


Rosser C.J.,Nonagen Bioscience Corporation | Ross S.,Nonagen Bioscience Corporation | Chang M.,University of Florida | Dai Y.,University of Florida | And 6 more authors.
Journal of Urology | Year: 2013

Purpose: Accurate urine assays for bladder cancer detection would benefit patients and health care systems. Through extensive genomic and proteomic profiling of urine components we previously identified a panel of 8 biomarkers that can facilitate the detection of bladder cancer in voided urine samples. In this study we confirmed this diagnostic molecular signature in a diverse multicenter cohort. Materials and Methods: We performed a case-control, phase II study in which we analyzed voided urine from 102 subjects with bladder cancer and 206 with varying urological disorders. The urinary concentration of 8 biomarkers (IL-8, MMP-9 and 10, PAI-1, VEGF, ANG, CA9 and APOE) was assessed by enzymelinked immunosorbent assay. Diagnostic performance of the panel of tested biomarkers was evaluated using ROCs and descriptive statistical values, eg sensitivity and specificity. Results: Seven of the 8 urine biomarkers were increased in subjects with bladder cancer relative to those without bladder cancer. The 7 biomarkers were assessed in a new model, which had an AUROC of 0.88 (95% CI 0.84-0.93), and 74% sensitivity and 90% specificity. In contrast, the sensitivity of voided urine cytology and the UroVysion® cytogenetic test in this cohort was 39% and 54%, respectively. Study limitations include analysis performed on banked urine samples and the lack of voided urine cytology and cytogenetic test data on controls. Conclusions: The study provides further evidence that the reported panel of diagnostic biomarkers can reliably achieve the noninvasive detection of bladder cancer with higher sensitivity than currently available urine based assays. © 2013 by American Urological Association Education and Research, Inc.


Gomes-Giacoia E.,University of Texas M. D. Anderson Cancer Center | Miyake M.,University of Texas M. D. Anderson Cancer Center | Goodison S.,University of Texas M. D. Anderson Cancer Center | Goodison S.,Nonagen Bioscience Corporation | And 2 more authors.
Molecular Cancer Therapeutics | Year: 2013

Cancers of the urinary bladder result in aggressive and highly angiogenic tumors for which standard treatments have only limited success. Patients with advanced disease have a 5-year survival rate of less than 20%, and no new anticancer agent has been successfully introduced into the clinic armamentarium for the treatment of bladder cancer in more than 20 years. Investigations have identified plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor, as being highly expressed in several malignancies, including bladder cancer, in which high expression is associated with a poor prognosis. In this study, we evaluated PAI-1 as a potential therapeutic target for bladder cancer. PAI-1 expression was manipulated in a panel of cell lines and functional inhibition was achieved using the small molecule tiplaxtinin. Reduction or inhibition of PAI-1 resulted in the reduction of cellular proliferation, cell adhesion, and colony formation, and the induction of apoptosis and anoikis in vitro. Treatment of T24 xenografts with tiplaxtinin resulted in inhibition of angiogenesis and induction of apoptosis, leading to a significant reduction in tumor growth. Similar results were obtained through evaluation of the human cervical cancer HeLa cell line, showing that PAI-1-mediated effects are not restricted to tumor cells of bladder origin. Collectively, these data show that targeting PAI-1 may be beneficial and support the notion that novel drugs such as tiplaxtinin could be investigated as anticancer agents. © 2013 AACR.

Loading Nonagen Bioscience Corporation collaborators
Loading Nonagen Bioscience Corporation collaborators