Entity

Time filter

Source Type


Goulos I.,Cranfield University | Pachidis V.,Cranfield University | D'Ippolito R.,Noesis Solutions | Stevens J.,National Aerospace Laboratory Netherlands | Smith C.,AgustaWestland
Journal of Engineering for Gas Turbines and Power | Year: 2012

This work focuses on the development and application of a generic methodology targeting the design of optimum rotorcraft operations in terms of fuel burn, gaseous emissions, and ground noise impact. An integrated tool capable of estimating the performance and emitted noise of any defined rotorcraft configuration within any designated mission has been deployed. A comprehensive and cost-effective optimization strategy has been structured. The methodology has been applied to two generic, baseline missions representative of current rotorcraft operations. Optimally designed operations for fuel burn, gaseous emissions, and ground noise impact have been obtained. A comparative evaluation has been waged between the acquired optimum designs. The respective trade-off arising from the incorporation of flight paths optimized for different objectives has been quantified. Pareto front derived models for fuel burn and emitted noise have been structured for each mission. The Pareto models have been subsequently deployed for the design of operations optimized in a multidisciplinary manner. The results have shown that the proposed methodology is promising with regards to achieving simultaneous reduction in fuel burn, gaseous emissions, and ground noise impact for any defined mission. The obtainable reductions are found to be dependent on the designated mission. Finally, the potential to design optimum operations in a multidisciplinary fashion using only a single design criterion is demonstrated. © 2012 American Society of Mechanical Engineers. Source


Goulos I.,Cranfield University | Ali F.,Cranfield University | Tzanidakis K.,Cranfield University | Pachidis V.,Cranfield University | D'Ippolito R.,Noesis Solutions
Journal of Engineering for Gas Turbines and Power | Year: 2015

This paper presents an integrated methodology for the comprehensive assessment of combined rotorcraft-powerplant systems at mission level. Analytical evaluation of existing and conceptual designs is carried out in terms of operational performance and environmental impact. The proposed approach comprises a wide-range of individual modeling theories applicable to rotorcraft flight dynamics and gas turbine engine performance. A novel, physics-based, stirred reactor model is employed for the rapid estimation of nitrogen oxides (NOx) emissions. The individual mathematical models are implemented within an elaborate numerical procedure, solving for total mission fuel consumption and associated pollutant emissions. The combined approach is applied to the comprehensive analysis of a reference twin-engine light (TEL) aircraft modeled after the Eurocopter Bo 105 helicopter, operating on representative mission scenarios. Extensive comparisons with flight test data are carried out and presented in terms of main rotor trim control angles and power requirements, along with general flight performance charts including payload-range diagrams. Predictions of total mission fuel consumption and NOx emissions are compared with estimated values provided by the Swiss Federal Office of Civil Aviation (FOCA). Good agreement is exhibited between predictions made with the physics-based stirred reactor model and experimentally measured values of NOx emission indices. The obtained results suggest that the production rates of NOx pollutant emissions are predominantly influenced by the behavior of total air inlet pressure upstream of the combustion chamber, which is affected by the employed operational procedures and the time-dependent all-up mass (AUM) of the aircraft. It is demonstrated that accurate estimation of on-board fuel supplies ahead of flight is key to improving fuel economy as well as reducing environmental impact. The proposed methodology essentially constitutes an enabling technology for the comprehensive assessment of existing and conceptual rotorcraft-powerplant systems, in terms of operational performance and environmental impact. Copyright © 2015 by ASME. Source


Ali F.,Cranfield University | Tzanidakis K.,Cranfield University | Goulos I.,Cranfield University | D'Ippolito R.,Noesis Solutions
Journal of Engineering for Gas Turbines and Power | Year: 2015

This paper aims to present an integrated rotorcraft conceptual design and analysis framework, deployed for the multidisciplinary design and optimization of regenerative powerplant configurations in terms of rotorcraft operational and environmental performance. The proposed framework comprises a wide-range of individual modeling theories applicable to rotorcraft flight dynamics, gas turbine engine performance, and weight estimation as well as a novel physics-based, stirred reactor model for the rapid estimation of gas turbine gaseous emissions. A multi-objective particle swarm optimizer (mPSO) is coupled with the aforementioned integrated rotorcraft multidisciplinary design framework. The combined approach is applied to conduct multidisciplinary design and optimization of a reference twin engine light civil rotorcraft modeled after the Airbus-Helicopters Bo105 helicopter, operating on representative mission scenario. Through the implementation of a multi-objective optimization study, Pareto front models have been acquired, quantifying the optimum interrelationship between the mission fuel consumption and gaseous emissions for the representative rotorcraft and a variety of engine configurations. The acquired optimum engine configurations are subsequently deployed for the design of conceptual rotorcraft regenerative engines, targeting improved mission fuel economy, enhanced payload range capability, as well as improvements in the rotorcraft overall environmental impact. The proposed methodology essentially constitutes an enabler in terms of focusing the multidisciplinary design and optimization of rotorcraft powerplants within realistic, three-dimensional operations and toward the realization of their associated design trade-offs at mission level. Copyright © 2015 by ASME. Source


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2007.1.2 | Award Amount: 4.03M | Year: 2008

The existing licensing models for commercial applications are focusing on software used on compute resources within an administrative domain. A problem occurs when we want to use this software in a distributed service oriented infrastructure where the resources are often not in the same administrative domain that hosts the license server which is authorizing the application use. Today licenses usually are bound to hardware within the domain of the user and do not allow access from outside thus enforcing local use of the protected applications only. The Grid approach in contrary is about using distributed resources from different domains. The experience made in many recent projects trying to use commercial applications in Grid systems clearly indicates a technological barrier of current licensing mechanisms that must be overcome before the Grid becomes a fully commercial productive environment.\n\nSMARTLM solution is to implement licenses as Grid services thus providing platform-independent access just like other Grid resources. Service Level Agreements based on evolving standards will then govern licenses. Depending on the level of trust signed or encrypted, agreements will be used to transport licenses through the Grid to the resource to which a user has been granted access to execute his application tasks. The agreement on a license and the conditions of use for an application will be reached through negotiation between service providers and service customers.\n\nSMARTLM will provide new generic licensing virtualization technology based on standards as WS-Agreement and WS-Negotiation and integrate it in the major Grid middlewares. The project will also identify new service-oriented business models for this approach. A number of widely-used license-protected commercial applications will be adapted to be executed under control of the new licensing mechanisms and will become part of a highly quality show-case to convince more code-owners to adapt their applications.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2009.4.3 | Award Amount: 4.66M | Year: 2011

Data and knowledge management technologies are of strategic importance for industrial innovation, provided they are integrated in the company processes, in the organisational structure, and can be flexibly adapted to company evolution. In particular the Product Development Process (PDP) of manufacturing companies, requires the efficient management of huge amounts of data from different sources and their integration in the subprocesses that compose the product chain. The efficient use of information lifecycle, by the large adoption of virtual testing and by the inter-functional management of related data in the product management would become a strategic advantage for the innovation race. Present ICT solutions separately address parts of product development, but an integrated approach that includes data and services required for the whole Product Development Process does not yet exist.iProd will improve the efficiency and quality of the Product Development Process developing a flexible, service oriented, customer driven software framework that will be the backbone of computer systems associated with current and new development processes. To achieve these goals, iProd will rely on knowledge management (KM), knowledge based engineering (KBE) and process integration and automation technologies.iProd will assume the challenge of complexity, semantic diversity and richness of content establishing semantically rich, open and transparent methodologies that will enable knowledge workers from aerospace, automotive and home appliances industries to manage product and process complexity, managing higher value information like functional specifications, requirements, decision rationale and engineering and business knowledge in general. This knowledge base along with a reasoning engine will support information sharing, collaboration across companies, common understanding of PDP among different industries and will promote efficient decision taking.

Discover hidden collaborations