Entity

Time filter

Source Type

Anglet, France

Grant
Agency: Cordis | Branch: FP7 | Program: CP-TP | Phase: EeB.NMP.2013-3 | Award Amount: 13.68M | Year: 2013

RESEEPE will bring together design and decision making tools, innovative building fabric manufacturers and a strong demonstration programme to demonstrate the improved building performance through retrofitting. The core idea of the RESSEEPE project is to technically advance, adapt, demonstrate and assess a number of innovative retrofit technologies. Reductions in the area of 50% will be achieved in terms of energy consumption .A systemic process will be also implemented that will allow the selection of the best possible retrofiting mix, customised to the needs of the particular building.. Several remarkable innovative technologies and materials will be integrated in the retrofitting process: - Envelope Retrofitting: Ventilated Facades, Aerogel-based Superinsulating mortar, Wooden Insulating Wall Panel and VIP Panel - Integration of RES: PV Energy, Thermal Collectors - Energy Storage Systems: Thermal storage and PCMs - Nanotechnologies and smart materials: EC/PV Windows - ICT: Strategies at building and district level - Intelligent Building Controls: HVAC systems The RESSEEPE framework will be validated and refined by a strong demonstration programme, envisaging the renovation of 102.000 square meters of public buildings, arriving to a total renovation of 205.000 square meters that will be deployed in the following years. The estimated average of energy consumption in the renovated demo sites, on final energy, will be 66 kWh/m2year, representing a 63% of reduction in energy consumption compared to the current situation. CO2 emissions will be 48,15 kg/m2year, corresponding to more than 60 % of reduction. The total emissions avoided by the demo sites will be 2257 tCO2/year. Associated investment costs to building renovation are expected to represent a maximum of 19% on average of the total costs of building an equivalent new building in the same location. On average, the return on investment will be around 7,6 years.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: LCE-03-2015 | Award Amount: 8.49M | Year: 2016

Building-integrated photovoltaics (BIPV) is currently an expansive market. Market analysts estimate a compound annual growth rate of 18,7% and a total of 5,4 GW installed worldwide between 2013 and 2019. One of the main drivers for BIPV market growth in the EU is the increasingly demanding legislation related to energy performance in buildings. The large potential for energy savings in buildings led the EU Commission to adopt the 2010/31/EU Directive on the energy performance of buildings with the objective that all new buildings are Nearly Zero Energy Buildings (NZEB) by 2020. Renewable energy technologies, and in particular the integration of photovoltaic systems in the building environment offer many possibilities to play a key role within the NZEB scenario. Despite this favorable framework for BIPV technology market uptake, initial estimations of BIPV market growth have been subsequently overestimated in the past few years. A series of demands from the stakeholders which have not been properly addressed by the BIPV value chain are the cause for this deviation. These key requirements are mainly related to the flexibility in design and aesthetics considerations, lack of tools integrating PV and building performance, demonstration of long-term reliability of the technology, compliance with legal regulations, smart interaction with the grid and cost effectiveness. Within this context: The objective of PVSITES project is to drive BIPV technology to a large market deployment by demonstrating an ambitious portfolio of building-integrated solar technologies and systems, giving a forceful, reliable answer to the market requirements identified by the industrial members of the consortium in their day-to-day activity. High impact demonstration and dissemination actions will be accomplished in terms of cost-effective renewable generation, reduction of energy demands and smart energy management.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: EeB-07-2015 | Award Amount: 7.91M | Year: 2015

Measurement campaigns have shown major discrepancies in buildings energy performance between planned energy demand and real energy consumption, while nowadays most of the newly constructed offices buildings are equipped with BMS systems, integrating a more or less extended measurement layer providing large amounts of data. Their integration in the building management sector offers an improvement capability of 22 % as some studies demonstrate. The HIT2GAP project will develop a new generation of building monitoring and control tools based on advanced data treatment techniques allowing new approaches to assess building energy performance data, getting a better understanding of buildings behaviour and hence a better performance. From a strong research layer on data, HIT2GAP will build on existing measurement and control tools that will be embedded into a new software platform for performance optimization. The solution will be: - Fully modular: able to integrate several types and generations of data treatment modules (different algorithms) and data display solutions, following a plug and play approach - Integrating data mining for knowledge discovery (DMKD) as a core technique for buildings behaviour assessment and understanding The HIT2GAP solution will be applied as a novel intelligent layer offering new capability of the existing BMS systems and offering the management stakeholders opportunities for services with a novel added value. Applying the solutions to groups of buildings will also allow to test energy demand vs. local production management modules. This will be tested in various pilot sites across Europe. HIT2GAP work will be realized with a permanent concern about market exploitation of the solutions developed within the project, with specific partnerships about business integration of the tools in the activity of key energy services partners of the consortium.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: EE-06-2015 | Award Amount: 5.14M | Year: 2016

The aim of the DR-BOB project is to demonstrate the economic and environmental benefits of demand response in blocks of buildings for the different key actors required to bring it to market. To achieve its aim the DR-BOB project will: Integrate existing technologies to form the DR-BOB Demand Response Energy Management solution for blocks-of-buildings with a potential ROI of 5 years or less. Demonstrate the DR-BOB integrated solution at 4 sites operating under different energy market and climatic conditions in the UK, France, Italy and Romania with blocks-of-buildings covering a total of 274,665 m2, a total of 47,600 occupants over a period of at least 12 months. Realise up to 11% saving in energy demand, up to 35% saving in electricity demand and a 30% reduction in the difference between peak power demand and minimum night time demand for building owners and facilities managers at the demonstration. Provide and validate a method of assessing at least 3 levels of technology readiness (1-no capability, 2-some capability, 3-full capability) related to the technologies required for consumers facilities managers, buildings and the local energy infrastructure to participate in the Demand Response Energy Management solution at any given site. Identify revenue sources with at least a 5% profit margin to underpin business models for each of the different types of stakeholders required to bring demand response in the blocks-of-buildings to market in different local and national contexts. Engage with at least 2,000 companies involved in the supply chain for demand response in blocks of buildings across the EU to disseminate the projects goals and findings.


EVENT will develop, demonstrate and validate a cost effective, high energy efficient, low CO2 emissions, replicable, low intrusive, systemic approach for retrofitting of residential and commercial buildings, able to achieve NZEB retrofit standard levels, through the integration of an innovative adaptive ventilated faade system, including: Embedded, breakthrough smart modular heat recovery units, which allow thermal storage mode High efficient photovoltaic generation capability units Cost-effective, easy to install, high performance adapted products for external thermal insulation Energy efficient HVAC systems The developed technologies will be integrated in the ventilated faade, and a real time intelligent faade management system will control operation of the system based on meteorological prediction methods for forecasting in advance the decentralised electricity production and the energy (electrical and thermal) demand of the building enabling maximum RE usage. It will inter-operate with existing or latest state-of-the-art Building Energy Management System, to achieve optimum energy efficiency by reducing primary energy needs, CO2 emissions and peak loads, assuring at least the same comfort levels required by Member States Building Codes, at an affordable price. Foreseen impact will be: Energy savings of more than 40%, by the holistic use of the ventilated faade, the heat recovery of ventilation air At least a reduction of 40% of CO2 emissions, as a consequence of the achieved primary energy savings Reduced thermal and electrical peak loads Typical performance target of less than 25 kWh/m 2 year (excluding appliances) Use of heat recovery units, number of photovoltaic cells, natural lighting strategies, and insulation thickness; are variable depending on the characteristics of the building to be retrofitted. Therefore EVENT retrofitting system can be adaptable to different types of buildings and climates, which makes the system versatile.

Discover hidden collaborations