Entity

Time filter

Source Type

Mifflinburg, PA, United States

Lee C.,Pennsylvania State University | Hristov A.N.,Pennsylvania State University | Cassidy T.W.,Pennsylvania State University | Heyler K.S.,Pennsylvania State University | And 5 more authors.
Journal of Dairy Science | Year: 2012

The objective of this experiment was to evaluate the effect of supplementing a metabolizable protein (MP)-deficient diet with rumen-protected (RP) Lys, Met, and specifically His on dairy cow performance. The experiment was conducted for 12. wk with 48. Holstein cows. Following a 2-wk covariate period, cows were blocked by DIM and milk yield and randomly assigned to 1 of 4 diets, based on corn silage and alfalfa haylage: control, MP-adequate diet (ADMP; MP balance: +9 g/d); MP-deficient diet (DMP; MP balance: -317. g/d); DMP supplemented with RPLys (AminoShure-L, Balchem Corp., New Hampton, NY) and RPMet (Mepron; Evonik Industries AG, Hanau, Germany; DMPLM); and DMPLM supplemented with an experimental RPHis preparation (DMPLMH). The analyzed crude protein content of the ADMP and DMP diets was 15.7 and 13.5 to 13.6%, respectively. The apparent total-tract digestibility of all measured nutrients, plasma urea-N, and urinary N excretion were decreased by the DMP diets compared with ADMP. Milk N secretion as a proportion of N intake was greater for the DMP diets compared with ADMP. Compared with ADMP, dry matter intake (DMI) tended to be lower for DMP, but was similar for DMPLM and DMPLMH (24.5, 23.0, 23.7, and 24.3. kg/d, respectively). Milk yield was decreased by DMP (35.2. kg/d), but was similar to ADMP (38.8. kg/d) for DMPLM and DMPLMH (36.9 and 38.5. kg/d, respectively), paralleling the trend in DMI. The National Research Council 2001. model underpredicted milk yield of the DMP cows by an average (±SE) of 10.3 ± 0.75. kg/d. Milk fat and true protein content did not differ among treatments, but milk protein yield was increased by DMPLM and DMPLMH compared with DMP and was not different from ADMP. Plasma essential amino acids (AA), Lys, and His were lower for DMP compared with ADMP. Supplementation of the DMP diets with RP AA increased plasma Lys, Met, and His. In conclusion, MP deficiency, approximately 15% below the National Research Council requirements from 2001, decreased DMI and milk yield in dairy cows. Supplementation of the MP-deficient diet with RPLys and RPMet diminished the difference in DMI and milk yield compared with ADMP and additional supplementation with RPHis eliminated it. As total-tract fiber digestibility was decreased with the DMP diets, but DMI tended to increase with RP AA supplementation, we propose that, similar to monogastric species, AA play a role in DMI regulation in dairy cows. Our data implicate His as a limiting AA in high-producing dairy cows fed corn silage- and alfalfa haylage-based diets, deficient in MP. The MP-deficient diets clearly increased milk N efficiency and decreased dramatically urinary N losses. © 2012 American Dairy Science Association. Source


Pacheco D.,Agresearch Ltd. | Patton R.A.,Nittany Dairy Nutrition Inc. | Parys C.,Evonik Industries | Lapierre H.,Agriculture and Agri Food Canada
Journal of Dairy Science | Year: 2012

The objective of this analysis was to compare the rumen submodel predictions of 4 commonly used dairy ration programs to observed values of duodenal flows of crude protein (CP), protein fractions, and essential AA (EAA). The literature was searched and 40 studies, including 154 diets, were used to compare observed values with those predicted by AminoCow (AC), Agricultural Modeling and Training Systems (AMTS), Cornell-Penn-Miner (CPM), and National Research Council 2001 (NRC) models. The models were evaluated based on their ability to predict the mean, their root mean square prediction error (RMSPE), error bias, and adequacy of regression equations for each protein fraction. The models predicted the mean duodenal CP flow within 5%, with more than 90% of the variation due to random disturbance. The models also predicted within 5% the mean microbial CP flow except CPM, which overestimated it by 27%. Only NRC, however, predicted mean rumen-undegraded protein (RUP) flows within 5%, whereas AC and AMTS underpredicted it by 8 to 9% and CPM by 24%. Regarding duodenal flows of individual AA, across all diets, CPM predicted substantially greater (>10%) mean flows of Arg, His, Ile, Met, and Lys; AMTS predicted greater flow for Arg and Met, whereas AC and NRC estimations were, on average, within 10% of observed values. Overpredictions by the CPM model were mainly related to mean bias, whereas the NRC model had the highest proportion of bias in random disturbance for flows of EAA. Models tended to predict mean flows of EAA more accurately on corn silage and alfalfa diets than on grass-based diets, more accurately on corn grain-based diets than on non-corn-based diets, and finally more accurately in the mid range of diet types. The 4 models were accurate at predicting mean dry matter intake. The AC, AMTS, and NRC models were all sufficiently accurate to be used for balancing EAA in dairy rations under field conditions. © 2012 American Dairy Science Association. Source


Giallongo F.,Pennsylvania State University | Harper M.T.,Pennsylvania State University | Oh J.,Pennsylvania State University | Lopes J.C.,Pennsylvania State University | And 5 more authors.
Journal of Dairy Science | Year: 2016

The objective of this study was to evaluate the effects of supplementing a metabolizable protein (MP)-deficient diet with rumen-protected (RP) Met, Lys, and His, individually or combined, on the performance of lactating dairy cows. The experiment was a 9-wk randomized complete block design with 72 Holstein cows. Following a 2-wk covariate period, cows were blocked by days in milk, milk yield, and parity, and randomly assigned to 1 of the following 6 treatments: (1) MP-adequate diet [MPA; +243 g/d MP balance, according to the National Research Council (2001) requirements]; (2) MP-deficient diet (MPD; -54 g/d MP balance); (3) MPD supplemented with RPMet (MPDM); (4) MPD supplemented with RPLys (MPDL); (5) MPD supplemented with RPHis (MPDH); and (6) MPD supplemented with RPMet, RPLys, and RPHis (MPDMLH). Dry matter intake (DMI), yields of milk and milk components (fat, protein, lactose) and energy-corrected milk (ECM), feed and ECM feed efficiencies, and milk and plasma urea N were decreased by MPD, compared with MPA. Supplementation of the MPD diet with RPLys increased milk protein content and plasma glucose concentration and tended to increase milk urea N. Addition of RPHis tended to increase DMI, increased milk protein concentration, and numerically increased yields of milk fat, protein, and ECM. In addition to the trends for increased DMI and milk fat content, and higher milk protein concentration, supplementation of the 3 RP AA also increased yields of milk fat, protein, and ECM and ECM feed efficiency. Relative to MPA, milk N efficiency tended to be increased by MPD. Concentrations of plasma essential AA (except Met and Thr) were decreased by MPD compared with MPA. Supplementation of RPMet, RPLys, and RPHis increased plasma Met (except for MPDM), Lys, and His concentrations, respectively. Cows fed MPD had lower blood hemoglobin concentration and numerically higher plasma ghrelin than cows fed MPA. Concentration of total saturated fatty acids in milk fat were or tended to be higher for MPD compared with MPA and MPDMLH, respectively. Concentration of total polyunsaturated and yield of milk odd- and branched-chain fatty acids were or tended to be decreased by MPD compared with MPA. Overall, the results of this study confirm our previous data and suggest that His stimulates DMI and the combination of the 3 RP AA (Met, Lys, and His) has the potential to improve milk and milk component yields in dairy cows fed MP-deficient diets. © 2016 American Dairy Science Association. Source


Heimbeck W.,Evonik Industries | Patton R.A.,Nittany Dairy Nutrition Inc.
Journal of Dairy Science | Year: 2010

Our objective was to evaluate the potential of rumen epithelium to transport 2-hydroxy-4-(methylthio)-butanoic isopropyl ester (HMBi) using the Ussing chamber technique. Rumen tissues were obtained from a nearby slaughterhouse, separated from the muscle and serosal layer as quickly as possible after exsanguination, placed in buffer, and gassed with 95:5 (vol/vol) O2:CO2 before tissue mounting. Two levels of HMBi (0.44 and 0.88mg/mL) and 2 incubation times (120 and 180min) were used in 12 chambers with 3 replicates per treatment with an exposed surface area of 2cm2. Four separate experiments were conducted (n=16). Concentrations of HMBi and methionine hydroxy analog (HMB) were measured by HPLC in rumen-side and serosal-side buffers. Data are expressed as percentage of added HMBi. Initial time samples were taken for comparison with incubated samples. Adding the HMBi-buffer mixture to the rumen side caused an immediate release of HMB (mean=6.3%). Breakdown of HMBi to HMB at initial time was due to hydrolysis reactions at the epithelial surface. Overall, a small and variable amount of HMBi was transferred to the serosal buffer (mean of 0.58% across both times and both concentrations). A larger amount of HMB (8.94%) was isolated in the serosal buffer. Increasing incubation time increased the amount of HMB in the ruminal buffer (34.0% at 120min vs. 43.4% at 180min) and decreased the amount of HMBi (37.9% at 120min vs. 28.1% at 180min). These data indicate that very limited amounts of HMBi may cross the rumen epithelium. The amount of HMB isolated on the serosal side was about 10 times higher than HMBi. The hydrolysis of HMBi to HMB required the presence of rumen tissue or perhaps microbes attached to the tissue. Based on this in vitro system, direct transport from the rumen would not explain rapid blood methionine increases observed when HMBi is fed. © 2010 American Dairy Science Association. Source


Giallongo F.,Pennsylvania State University | Hristov A.N.,Pennsylvania State University | Oh J.,Pennsylvania State University | Frederick T.,Pennsylvania State University | And 6 more authors.
Journal of Dairy Science | Year: 2015

This experiment was conducted with the objective to investigate the effects of slow-release urea and rumen-protected (RP) Met and His supplementation of a metabolizable protein (MP)-deficient diet (according to NRC, 2001) on lactation performance of dairy cows. Sixty lactating Holstein cows were used in a 10-wk randomized complete block-design trial. Cows were fed a covariate diet for 2 wk and then assigned to one of the following treatments for an 8-wk experimental period: (1) MP-adequate diet [AMP; 107% of MP requirements, based on the National Research Council (NRC, 2001)]; (2) MP-deficient diet (DMP; 95% of MP requirements); (3) DMP supplemented with slow-release urea (DMPU); (4) DMPU supplemented with RPMet (DMPUM); and (5) DMPUM supplemented with RPHis (DMPUMH). Total-tract apparent digestibility of dry matter, organic matter, neutral detergent fiber, and crude protein, and urinary N and urea-N excretions were decreased by DMP, compared with AMP. Addition of slow-release urea to the DMP diet increased urinary urea-N excretion. Dry matter intake (DMI) and milk yield (on average 44.0. ±. 0.9. kg/d) were not affected by treatments, except DMPUMH increased DMI and numerically increased milk yield, compared with DMPUM. Milk true protein concentration and yield were increased and milk fat concentration tended to be decreased by DMPUMH, compared with DMPUM. Cows gained less body weight on the DMP diet, compared with AMP. Plasma concentrations of His and Lys were not affected by treatments, whereas supplementation of RPMet increased plasma Met concentration. Plasma concentration of 3-methylhistidine was or tended to be higher for DMP compared with AMP and DMPU, respectively. Addition of RPHis to the DMPUM diet tended to increase plasma glucose and creatinine. In conclusion, feeding a 5% MP-deficient diet (according to NRC, 2001) did not decrease DMI and yields of milk and milk components, despite a reduction in nutrient digestibility. Supplementation of RPHis increased DMI and milk protein concentration and yield. These results are in line with our previous data and suggest that His may have a positive effect on voluntary feed intake and milk production and composition in high-yielding dairy cows fed MP-deficient diets. © 2015 American Dairy Science Association. Source

Discover hidden collaborations