Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine & Key Laboratory of Hui Ethnic Medicine Modernization

Yinchuan, China

Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine & Key Laboratory of Hui Ethnic Medicine Modernization

Yinchuan, China
SEARCH FILTERS
Time filter
Source Type

Wang H.,Ningxia Medical University | Zhang G.,Ningxia Medical University | Ma X.,Ningxia Medical University | Ma X.,Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine & Key Laboratory of Hui Ethnic Medicine Modernization | And 6 more authors.
European Journal of Pharmaceutics and Biopharmaceutics | Year: 2017

Poly (lactide-co-glycolide) (PLGA) microparticles are widely used for controlled drug delivery. Emulsion methods have been commonly used for preparation of PLGA microparticles, but they usually result in low loading capacity, especially for drugs with poor solubility in organic solvents. In the present study, the nanocrystal technology and a water-soluble polymer template method were used to fabricate nanocrystal-loaded microparticles with improved drug loading and encapsulation efficiency for prolonged delivery of breviscapine. Breviscapine nanocrystals were prepared using a precipitation-ultrasonication method and further loaded into PLGA microparticles by casting in a mold from a water-soluble polymer. The obtained disc-like particles were then characterized and compared with the spherical particles prepared by an emulsion-solvent evaporation method. X-ray powder diffraction (XRPD) and confocal laser scanning microscopy (CLSM) analysis confirmed a highly-dispersed state of breviscapine inside the microparticles. The drug form, loading percentage and fabrication techniques significantly affected the loading capacity and efficiency of breviscapine in PLGA microparticles, and their release performance as well. Drug loading was increased from 2.4% up to 15.3% when both nanocrystal and template methods were applied, and encapsulation efficiency increased from 48.5% to 91.9%. But loading efficiency was reduced as the drug loading was increased. All microparticles showed an initial burst release, and then a slow release period of 28 days followed by an erosion-accelerated release phase, which provides a sustained delivery of breviscapine over a month. A relatively stable serum drug level for more than 30 days was observed after intramuscular injection of microparticles in rats. Therefore, PLGA microparticles loaded with nanocrystals of poorly soluble drugs provided a promising approach for long-term therapeutic products characterized with preferable in vitro and in vivo performance. © 2017


Liu C.,Ningxia Medical University | Chang D.,Ningxia Medical University | Zhang X.,Ningxia Medical University | Sui H.,Ningxia Medical University | And 4 more authors.
AAPS PharmSciTech | Year: 2017

Lutein is widely used as diet supplement for prevention of age-related macular degeneration. However, the application and efficacy of lutein in food and nutritional products has been hampered due to its poor solubility and low oral bioavailability. This study aimed to develop and evaluate the formulation of oral fast-dissolving film (OFDF) containing lutein nanocrystals for enhanced bioavailability and compliance. Lutein nanocrystals were prepared by anti-solvent precipitation method and then encapsulated into the films by solvent casting method. The formulation of OFDF was optimized by Box-Behnken Design (BBD) as follows: HPMC 2.05% (w/v), PEG 400 1.03% (w/v), Cremophor EL 0.43% (w/v). The obtained films exhibited uniform thickness of 35.64 ± 1.64 μm and drug content of 0.230 ± 0.003 mg/cm2 and disintegrated rapidly in 29 ± 8 s. The nanocrystal-loaded films with reconstituted particle size of 377.9 nm showed better folding endurance and faster release rate in vitro than the conventional OFDFs with raw lutein. The microscope images, thermograms, and diffractograms indicated that lutein nanocrystals were highly dispersed into the films. After administrated to SD rats, tmax was decreased from 3 h for oral solution formulation to less than 0.8 h for OFDF formulations, and Cmax increased from 150 ng/mL for solution to 350 ng/mL for conventional OFDF or 830 ng/mL for nanocrystal OFDF. The AUC0-24h of conventional or nanocrystal OFDF was 1.37 or 2.08-fold higher than that of the oral solution, respectively. These results suggested that drug nanocrystal-loaded OFDF can be applied as a promising approach for enhanced bioavailability of poor soluble drugs like lutein. © 2017 American Association of Pharmaceutical Scientists


Wang W.,Ningxia Medical University | Wang W.,Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine & Key Laboratory of Hui Ethnic Medicine Modernization | Cai Y.,Ningxia Medical University | Zhang G.,Ningxia Medical University | And 6 more authors.
Drug Delivery | Year: 2016

Lung-targeting sophoridine-loaded poly(lactide-co-glycolide) (PLGA) microspheres were constructed by a simple oil-in-oil emulsion-solvent evaporation method. The obtained microspheres were systematically studied on their morphology, size distribution, drug loading, encapsulation efficiency, in vitro release profile, and biodistribution in rats. The drug-loaded microparticles showed as tiny spheres under SEM and had an average size of 17 μm with 90% of the microspheres ranging from 12 to 24 μm. The drug loading and encapsulation efficiency were 65% and 6.5%, respectively. The in vitro drug release behavior of microspheres exhibited an initial burst of 16.6% at 4 h and a sustained-release period of 14 days. Drug concentration in lung tissue of rats was 220.10 μg/g for microspheres and 6.77 μg/g for solution after intraveneous injection for 30 min, respectively. And the microsphere formulation showed a significantly higher drug level in lung tissue than in other major organs and blood samples for 12 days. These results demonstrated that the obtained PLGA microspheres could potentially improve the treatment efficacy of sophoridine against lung cancer. © 2016 Informa UK Limited, trading as Taylor & Francis Group.


Liu C.,Ningxia Medical University | Hu J.,Ningxia Medical University | Sui H.,Ningxia Medical University | Sui H.,Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine & Key Laboratory of Hui Ethnic Medicine Modernization | And 5 more authors.
Drug Delivery and Translational Research | Year: 2017

This study aimed to investigate the performance of the eutectic mixture of menthol and camphor (1:1, w/w) in nanoemulsion formulation for enhanced transdermal penetration of water-insoluble glabridin. Glabridin solubility in different media was determined by a shaking bottle method. The pseudoternary phase diagrams of the oil phase (drug-loaded eutectic mixture or IPM), the surfactant (Tween 80:glycerol = 2:1, w/w), and water were constructed using the aqueous titration method. The obtained glabridin nanoemulsions were characterized and compared on their particle sizes, in vitro and in vivo penetration performance on rat skin, and storage stability. The nanoemulsion formulation was optimized as 0.25% glabridin, 5% oil phase, 10% Tween 80, 5% glycerol, and 79.75% water. The obtained nanoemulsions showed a mean droplet size of nearly 100 nm for different oil phases. And the stability of both formulations was similar after storage for 3 months. In vitro skin permeation study showed that the nanoemulsion formulation with eutectic mixture exhibited higher skin permeability (28.26 μg/cm2) than that with IPM (9.94 μg/cm2) or the drug solution formulation (3.82 μg/cm2), which was further confirmed by in vivo skin permeation tests on the rat skin and human skin. The eutectic mixture is a preferable solvent for glabridin, and its nanoemulsion can be used as an excellent nanocarrier for enhanced transdermal delivery of glabridin. © 2017, Controlled Release Society.


Wang W.,Ningxia Medical University | Wang W.,Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine & Key Laboratory of Hui Ethnic Medicine Modernization | Cai Y.,Ningxia Medical University | Liu Y.,Ningxia Medical University | And 5 more authors.
Artificial Cells, Nanomedicine and Biotechnology | Year: 2016

In this work, microemulsion-based gels were prepared for transdermal delivery of paeonol. Microemulsions containing eutectic mixtures of paeonol and menthol were developed. The obtained microemulsions were evaluated for particle size, viscosity and physical stability. The selected microemulsions were incorporated into Carbopol gels. Drug crystallization behavior during a short-term storage was compared and in vitro permeation and deposition study were conducted on mouse skin. Results showed that the eutectic liquids of paeonol and menthol at all ratio (6:4, 5:5 and 4:6) could form microemulsions but with significantly different physical characteristics. As the ratio of paeonol increased, the prepared microemulsions exhibited larger droplet size, higher viscosity and quicker crystal growth. Microemulsion containing paeonol and menthol at a ratio of 4:6 possessed the smallest size of 27 nm. Accordingly, the related gel showed better physical stability during 10 days of storage, as well as the highest percent of drug deposition (111.8 μg/cm2) and steady-state flux (0.3 μg/cm2 h). These results suggested that the microemulsion formulation is a preferable approach for enhanced skin permeation, and the microemulsion based on drug–menthol eutectic mixture might be used as a potential transdermal delivery system for better therapeutic efficacy. © 2016 Informa UK Limited, trading as Taylor & Francis Group

Loading Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine & Key Laboratory of Hui Ethnic Medicine Modernization collaborators
Loading Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine & Key Laboratory of Hui Ethnic Medicine Modernization collaborators