Singapore, Singapore
Singapore, Singapore

Time filter

Source Type

Nayak T.R.,National University of Singapore | Andersen H.,National University of Singapore | Makam V.S.,National University of Singapore | Khaw C.,Nikon Imaging Center | And 7 more authors.
ACS Nano | Year: 2011

Current tissue engineering approaches combine different scaffold materials with living cells to provide biological substitutes that can repair and eventually improve tissue functions. Both natural and synthetic materials have been fabricated for transplantation of stem cells and their specific differentiation into muscles, bones, and cartilages. One of the key objectives for bone regeneration therapy to be successful is to direct stem cells proliferation and to accelerate their differentiation in a controlled manner through the use of growth factors and osteogenic inducers. Here we show that graphene provides a promising biocompatible scaffold that does not hamper the proliferation of human mesenchymal stem cells (hMSCs) and accelerates their specific differentiation into bone cells. The differentiation rate is comparable to the one achieved with common growth factors, demonstrating graphenes potential for stem cell research. © 2011 American Chemical Society.


Heinrich D.,Leiden University | Heinrich D.,Fraunhofer Institute for Silicate Research | Ecke M.,Max Planck Institute of Biochemistry | Jasnin M.,Max Planck Institute of Biochemistry | And 2 more authors.
Biophysical Journal | Year: 2014

Membrane pearling in live cells is observed when the plasma membrane is depleted of its support, the cortical actin network. Upon efficient depolymerization of actin, pearls of variable size are formed, which are connected by nanotubes of ∼40 nm diameter. We show that formation of the membrane tubes and their transition into chains of pearls do not require external tension, and that they neither depend on microtubule-based molecular motors nor pressure generated by myosin-II. Pearling thus differs from blebbing. The pearling state is stable as long as actin is prevented from polymerizing. When polymerization is restored, the pearls are retracted into the cell, indicating continuity of the membrane. Our data suggest that the alternation of pearls and strings is an energetically favored state of the unsupported plasma membrane, and that one of the functions of the actin cortex is to prevent the membrane from spontaneously assuming this configuration. © 2014 Biophysical Society.


Castello M.,Instituto Italiano Of Tecnonogia | Castello M.,University of Genoa | Lanzano L.L.,Instituto Italiano Of Tecnonogia | Coto Hernandez I.,Instituto Italiano Of Tecnonogia | And 6 more authors.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE | Year: 2015

In a stimulated emission depletion (STED) microscope the region from which a fluorophore can spontaneously emit shrinks with the continued STED beam action after the excitation event. This fact has been recently used to implement a versatile, simple and cheap STED microscope that uses a pulsed excitation beam, a STED beam running in continuous-wave (CW) and a time-gated detection: By collecting only the delayed (with respect to the excitation events) fluorescence, the STED beam intensity needed for obtaining a certain spatial resolution strongly reduces, which is fundamental to increase live cell imaging compatibility. This new STED microscopy implementation, namely gated CW-STED, is in essence limited (only) by the reduction of the signal associated with the time-gated detection. Here we show the recent advances in gated CW-STED microscopy and related methods. We show that the time-gated detection can be substituted by more efficient computational methods when the arrival-times of all fluorescence photons are provided. © 2015 SPIE.


Rebscher N.,University of Marburg | Lidke A.K.,University of Marburg | Ackermann C.F.,Nikon Imaging Center
EvoDevo | Year: 2012

Background: In the polychaete Platynereis, the primordial germ cells (PGCs) emerge from the vasa, piwi, and PL10 expressing mesodermal posterior growth zone (MPGZ) at the end of larval development, suggesting a post-embryonic formation from stem cells.Methods: In order to verify this hypothesis, embryos and larvae were pulse labeled with the proliferation marker 5-ethynyl-2'-deoxyuridine (EdU) at different stages of development. Subsequently, the PGCs were visualized in 7-day-old young worms using antibodies against the Vasa protein.Results: Surprisingly, the primordial germ cells of Platynereis incorporate EdU only shortly before gastrulation (6-8 hours post fertilization (hpf)), which coincides with the emergence of four small blastomeres from the mesoblast lineage. We conclude that these so-called 'secondary mesoblast cells' constitute the definitive PGCs in Platynereis. In contrast, the cells of the MPGZ incorporate EdU only from the pre-trochophore stage onward (14 hpf).Conclusion: While PGCs and the cells of the MPGZ in Platynereis are indistinguishable in morphology and both express the germline markers vasa, nanos, and piwi, a distinct cluster of PGCs is detectable anterior of the MPGZ following EdU pulse-labeling. Indeed the PGCs form independently from the stem cells of the MPGZ prior to gastrulation. Our data suggest an early PGC formation in the polychaete by preformation rather than by epigenesis. © 2012 Rebscher et al; licensee BioMed Central Ltd.


Hernandez I.C.,Italian Institute of Technology | Hernandez I.C.,University of Genoa | Buttafava M.,Polytechnic of Milan | Boso G.,Polytechnic of Milan | And 6 more authors.
Biomedical Optics Express | Year: 2015

Stimulated emission depletion (STED) microscopy provides fluorescence imaging with sub-diffraction resolution. Experimentally demonstrated at the end of the 90s, STED microscopy has gained substantial momentum and impact only in the last few years. Indeed, advances in many fields improved its compatibility with everyday biological research. Among them, a fundamental step was represented by the introduction in a STED architecture of the time-gated detection, which greatly reduced the complexity of the implementation and the illumination intensity needed. However, the benefits of the time-gated detection came along with a reduction of the fluorescence signal forming the STED microscopy images. The maximization of the useful (within the time gate) photon flux is then an important aspect to obtain super-resolved images. Here we show that by using a fast-gated single-photon avalanche diode (SPAD), i.e. a detector able to rapidly (hundreds picoseconds) switch-on and -off can improve significantly the signal-to-noise ratio (SNR) of the gated STED image. In addition to an enhancement of the image SNR, the use of the fast-gated SPAD reduces also the system complexity. We demonstrate these abilities both on calibration and biological sample. The experiments were carried on a gated STED microscope based on a STED beam operating in continuous-wave (CW), although the fast-gated SPAD is fully compatible with gated STED implementations based on pulsed STED beams. © 2015 Optical Society of America.


Saliba A.-E.,University Pierre and Marie Curie | Saias L.,University Pierre and Marie Curie | Psychari E.,University Pierre and Marie Curie | Psychari E.,French Institute of Health and Medical Research | And 15 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2010

We propose a unique method for cell sorting, "Ephesia," using columns of biofunctionalized superparamagnetic beads self-assembled in a microfluidic channel onto an array of magnetic traps prepared by microcontact printing. It combines the advantages of microfluidic cell sorting, notably the application of a well controlled, flow-activated interaction between cells and beads, and those of immunomagnetic sorting, notably the use of batch-prepared, well characterized antibody-bearing beads. On cell lines mixtures, we demonstrated a capture yield better than 94%, and the possibility to cultivate in situ the captured cells. Asecond series of experiments involved clinical samples - blood, pleural effusion, and fine needle aspirates - issued from healthy donors and patients with B-cell hematological malignant tumors (leukemia andlymphoma). The immunophenotype and morphology of B-lymphocytes were analyzed directly in the microfluidic chamber, and compared with conventional flow cytometry and visual cytology data, in a blind test. Immunophenotyping results using Ephesia were fully consistent with those obtained by flow cytometry.We obtained in situ high resolution confocal three-dimensional images of the cell nuclei, showing intranuclear details consistent with conventional cytological staining. Ephesia thus provides a powerful approach to cell capture and typing allowing fully automated high resolution and quantitative immunophenotyping and morphological analysis. It requires at least 10 times smaller sample volume and cell numbers than cytometry, potentially increasing the range of indications and the success rate of microbiopsy-based diagnosis, and reducing analysis time and cost.


Hegge S.,University of Heidelberg | Munter S.,University of Heidelberg | Steinbuchel M.,University of Heidelberg | Heiss K.,University of Heidelberg | And 4 more authors.
FASEB Journal | Year: 2010

Adhesion of eukaryotic cells is a complex process during which interactions between extracellular ligands and cellular receptors on the plasma membrane modulate the organization of the cytoskeleton. Pathogens particularly rely often on adhesion to tissues or host cells in order to establish an infection. Here, we examined the adhesion of Plasmodium sporozoites, the motile form of the malaria parasite transmitted by the mosquito, to flat surfaces. Experiments using total internal reflection fluorescence microscopy and analysis of sporozoites under flow revealed a stepwise and developmentally regulated adhesion process. The sporozoite-specific transmembrane proteins TRAP and S6 were found to be important for initial adhesion. The structurally related protein TLP appears to play a specific role in adhesion under static conditions, as tlp(-) sporozoites move 4 times less efficiently than wild-type sporozoites. This likely reflects the decreased intradermal sporozoite movement of sporozoites lacking TLP. Further, these three sporozoite surface proteins also act in concert with actin filaments to organize efficient adhesion of the sporozoite prior to initiating motility and host cell invasion. © FASEB.


Castello M.,Italian Institute of Technology | Castello M.,University of Genoa | Diaspro A.,Italian Institute of Technology | Diaspro A.,Nikon Imaging Center | Vicidomini G.,Italian Institute of Technology
Applied Physics Letters | Year: 2014

Time-gated detection, namely, only collecting the fluorescence photons after a time-delay from the excitation events, reduces complexity, cost, and illumination intensity of a stimulated emission depletion (STED) microscope. In the gated continuous-wave- (CW-) STED implementation, the spatial resolution improves with increased time-delay, but the signal-to-noise ratio (SNR) reduces. Thus, in sub-optimal conditions, such as a low photon-budget regime, the SNR reduction can cancel-out the expected gain in resolution. Here, we propose a method which does not discard photons, but instead collects all the photons in different time-gates and recombines them through a multi-image deconvolution. Our results, obtained on simulated and experimental data, show that the SNR of the restored image improves relative to the gated image, thereby improving the effective resolution. © 2014 AIP Publishing LLC.

Loading Nikon Imaging Center collaborators
Loading Nikon Imaging Center collaborators